Source codeVideos
Exponents and Logarithms

Logarithm Properties

Nabil Akbarazzima Fatih

Mathematics

Basic Properties of Logarithms

Like exponents, logarithms also have several important properties that need to be understood. These properties will be very helpful in solving various logarithmic problems.

Let a>0a > 0 and a1a \neq 1, b>0b > 0, c>0c > 0, m>0m > 0, m1m \neq 1, where a,b,c,m,na, b, c, m, n are real numbers (a,b,c,m,nR)(a, b, c, m, n \in \mathbb{R}). The following are logarithm properties:

  1. aloga=1^a\log a = 1
  2. alog1=0^a\log 1 = 0
  3. alogan=n^a\log a^n = n
  4. alog(b×c)=alogb+alogc^a\log (b \times c) = ^a\log b + ^a\log c
  5. alog(bc)=alogbalogc^a\log \left(\frac{b}{c}\right) = ^a\log b - ^a\log c
  6. alogbn=nalogb^a\log b^n = n \cdot ^a\log b
  7. alogb=mlogbmloga=1bloga^a\log b = \frac{^m\log b}{^m\log a} = \frac{1}{^b\log a}
  8. alogb×blogc=alogc^a\log b \times ^b\log c = ^a\log c

Proving Logarithm Properties

Logarithm of Multiplication

Property 4: alog(b×c)=alogb+alogc^a\log (b \times c) = ^a\log b + ^a\log c

Proof: Let alogb=m^a\log b = m and alogc=n^a\log c = n

This means:

b=amb = a^m and c=anc = a^n

Using the property of exponents:

b×c=am×an=am+nb \times c = a^m \times a^n = a^{m+n}

Therefore:

alog(b×c)=alog(am+n)=m+n=alogb+alogc^a\log (b \times c) = ^a\log (a^{m+n}) = m + n = ^a\log b + ^a\log c

Logarithm of Division

Property 5: alog(bc)=alogbalogc^a\log \left(\frac{b}{c}\right) = ^a\log b - ^a\log c

Proof: Let alogb=m^a\log b = m and alogc=n^a\log c = n

Then b=amb = a^m and c=anc = a^n

Recall that aman=amn\frac{a^m}{a^n} = a^{m-n}, so:

bc=aman=amn\frac{b}{c} = \frac{a^m}{a^n} = a^{m-n}

Therefore:

alog(bc)=alog(amn)=mn=alogbalogc^a\log \left(\frac{b}{c}\right) = ^a\log (a^{m-n}) = m - n = ^a\log b - ^a\log c

Logarithm of Power

Property 6: alogbn=nalogb^a\log b^n = n \cdot ^a\log b

Proof: Let alogb=m^a\log b = m

alogbn^a\log b^n means the logarithm of bb raised to the power of nn

alogbn=alog(b×b×b××bn factors)^a\log b^n = ^a\log (\underbrace{b \times b \times b \times \ldots \times b}_{n \text{ factors}})

Using property 4 repeatedly:

alogbn=alogb+alogb+alogb++alogbn factors=nalogb^a\log b^n = \underbrace{^a\log b + ^a\log b + ^a\log b + \ldots + ^a\log b}_{n \text{ factors}} = n \cdot ^a\log b

Change of Base

Property 7: alogb=mlogbmloga=1bloga^a\log b = \frac{^m\log b}{^m\log a} = \frac{1}{^b\log a}

Proof: Based on the definition of logarithm, alogb=c^a\log b = c if and only if b=acb = a^c

Suppose we use base mm for the logarithm of bb:

mlogb=mlogac^m\log b = ^m\log a^c

Using property 6:

mlogb=cmloga^m\log b = c \cdot ^m\log a

Since c=alogbc = ^a\log b, then:

mlogb=alogbmloga^m\log b = ^a\log b \cdot ^m\log a

Therefore:

alogb=mlogbmloga^a\log b = \frac{^m\log b}{^m\log a}

If m=bm = b, then:

alogb=blogbbloga=1bloga^a\log b = \frac{^b\log b}{^b\log a} = \frac{1}{^b\log a}

Chain Rule for Logarithms

Property 8: alogb×blogc=alogc^a\log b \times ^b\log c = ^a\log c

Proof: Based on the definition:

alogb=mb=am^a\log b = m \Leftrightarrow b = a^m
blogc=nc=bn^b\log c = n \Leftrightarrow c = b^n

Substitute the value of bb into the equation for cc:

c=bn=(am)n=amnc = b^n = (a^m)^n = a^{mn}

Since c=amnc = a^{mn}, then:

alogc=alog(amn)=mn=alogb×blogc^a\log c = ^a\log (a^{mn}) = mn = ^a\log b \times ^b\log c

Application Example

Suppose we want to calculate 5log125^5\log 125.

Using property 6:

5log125=5log53=35log5=31=3^5\log 125 = ^5\log 5^3 = 3 \cdot ^5\log 5 = 3 \cdot 1 = 3

Exercises

  1. Simplify the following expressions:

    a. 9log81^9\log 81

    b. 2log642log16^2\log 64 - ^2\log 16

    c. 4log1610^4\log 16^{10}

  2. If 5log4=m^5\log 4 = m, 4log3=n^4\log 3 = n, express 12log100^{12}\log 100 in terms of m and n.

  3. The population of city A in 2010 was 300,000 people. The average population growth rate is 6% per year. If the population growth is assumed to be the same each year, in how many years will the population of city A become 1 million?

  4. How much time is needed for Dini's money, which was initially Rp2,000,000.00, to become Rp6,500,000.00 if she saves it in a bank that gives her an interest rate of 12%?

Answer Key

  1. Determining logarithm values

    a. Answer:

    9log81=9log92^9\log 81 = ^9\log 9^2
    9log81=29log9^9\log 81 = 2 \cdot ^9\log 9
    9log81=21=2^9\log 81 = 2 \cdot 1 = 2

    b. Answer:

    2log642log16=2log6416^2\log 64 - ^2\log 16 = ^2\log \frac{64}{16}
    2log642log16=2log4^2\log 64 - ^2\log 16 = ^2\log 4
    2log642log16=2^2\log 64 - ^2\log 16 = 2

    c. Answer:

    4log1610=4log(42)10^4\log 16^{10} = ^4\log (4^2)^{10}
    4log1610=4log420^4\log 16^{10} = ^4\log 4^{20}
    4log1610=20^4\log 16^{10} = 20
  2. Given that 5log4=m^5\log 4 = m, 4log3=n^4\log 3 = n

    Then:

    12log100=4log1004log12^{12}\log 100 = \frac{^4\log 100}{^4\log 12}
    =4log(4×25)4log(4×3)= \frac{^4\log(4 \times 25)}{^4\log(4 \times 3)}
    =4log4+4log254log4+4log3= \frac{^4\log 4 + ^4\log 25}{^4\log 4 + ^4\log 3}
    =4log4+24log54log4+4log3= \frac{^4\log 4 + 2 \cdot ^4\log 5}{^4\log 4 + ^4\log 3}
    =1+21m1+n= \frac{1 + 2 \cdot \frac{1}{m}}{1 + n}
    =1+2m1+n= \frac{1 + \frac{2}{m}}{1 + n}
  3. Initial population = 300,000 people

    Annual population growth = 6%

    The appropriate function to describe population growth in xx years is:

    f(x)=300,000(1+0.06)xf(x) = 300,000(1 + 0.06)^x

    For a population of 1,000,000 people:

    1,000,000=300,000(1+0.06)x1,000,000 = 300,000(1 + 0.06)^x
    1,000,000=300,000(1.06)x1,000,000 = 300,000(1.06)^x
    1,000,000300,000=(1.06)x\frac{1,000,000}{300,000} = (1.06)^x
    3.33=(1.06)x3.33 = (1.06)^x
    x=1.06log3.33x = ^{1.06}\log 3.33
    x=20.645x = 20.645

    Therefore, the population will reach 1,000,000 people in 20 or 21 years.

  4. Initial savings = Rp2,000,000.00

    Final savings = Rp6,500,000.00

    Interest rate = 12%

    The appropriate function to describe Dini's savings in xx years is:

    f(x)=2,000,000(1+0.12)xf(x) = 2,000,000(1 + 0.12)^x

    For a final saving amount of Rp6,500,000.00:

    6,500,000=2,000,000(1+0.12)x6,500,000 = 2,000,000(1 + 0.12)^x
    6,500,000=2,000,000(1.12)x6,500,000 = 2,000,000(1.12)^x
    6,500,0002,000,000=(1.12)x\frac{6,500,000}{2,000,000} = (1.12)^x
    3.25=(1.12)x3.25 = (1.12)^x
    x=1.12log3.25x = ^{1.12}\log 3.25
    x=10.4x = 10.4

    Therefore, Dini's savings will reach Rp6,500,000.00 in 10 years.