# Nakafa Framework: LLM
URL: /en/subject/high-school/11/mathematics/circle/circle-and-arc-circle
Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/circle/circle-and-arc-circle/en.mdx
Output docs content for large language models.
---
export const metadata = {
  title: "Circle and Arc Circle",
  description: "Learn circle fundamentals, arc types, and sector calculations. Master equations, elements, and solve arc length problems with visual examples.",
  authors: [{ name: "Nabil Akbarazzima Fatih" }],
  date: "05/18/2025",
  subject: "Circle",
};
import { getColor } from "@repo/design-system/lib/color";
import { LineEquation } from "@repo/design-system/components/contents/line-equation";
## Definition of Circle
A circle is the set of all points on a plane that have the same distance to a fixed point. The fixed point is called the **center of the circle**, while the same distance is called the **radius**.
Mathematically, a circle with center  and radius  can be expressed with the equation:
### Elements of Circle
How is the visualization of the circle equation?
 {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
      labels: [{ text: "Circle", at: 0, offset: [1.5, -1, 0] }],
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 3, y: 0, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
      labels: [
        { text: "O", at: 0, offset: [0, -0.5, 0] },
        { text: "r", at: 0, offset: [1.5, 0.3, 0] },
      ],
    },
    {
      points: [
        { x: -3, y: 0, z: 0 },
        { x: 3, y: 0, z: 0 },
      ],
      color: getColor("CYAN"),
      labels: [{ text: "diameter", at: 0, offset: [0, -0.5, 0] }],
    },
    {
      points: [
        { x: 2.12, y: 2.12, z: 0 },
        { x: -2.12, y: 2.12, z: 0 },
      ],
      color: getColor("AMBER"),
      labels: [{ text: "chord", at: 0, offset: [0, 0.5, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 10]}
  showZAxis={false}
/>
**Important elements of circle:**
- **Center of circle (O)**: Fixed point that becomes the reference of the circle
- **Radius (r)**: Distance from center to any point on the circle
- **Diameter (d)**: Chord that passes through the center of the circle, 
- **Chord**: Line segment that connects two points on the circle
## Arc of Circle
Arc of circle is a part of the circumference of the circle that is bounded by two points on the circle. Arc is denoted with a curved symbol above the letters, for example .
### Types of Arc
 {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("VIOLET"),
      showPoints: false,
      labels: [{ text: "Minor arc", at: 45, offset: [1, 1, 0] }],
    },
    {
      points: [
        { x: 0, y: 3, z: 0 },
        { x: 3, y: 0, z: 0 },
      ],
      color: getColor("TEAL"),
      showPoints: true,
    },
    {
      points: Array.from({ length: 271 }, (_, i) => {
        const angle = ((i + 90) * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("TEAL"),
      showPoints: false,
      labels: [
        {
          text: "Major arc",
          at: 135,
          offset: [-1, -1, 0],
        },
      ],
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 3, y: 0, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 0, y: 3, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
    },
  ]}
  cameraPosition={[0, 0, 10]}
  showZAxis={false}
/>
**Types of arc based on their length:**
- **Minor arc**: Arc whose length is less than half the circumference of the circle
- **Major arc**: Arc whose length is more than half the circumference of the circle
- **Semicircle**: Arc whose length is exactly half the circumference of the circle
## Central Angle and Inscribed Angle
### Central Angle
Central angle is an angle whose vertex is at the center of the circle and whose sides are radii of the circle.
      Central Angle 
    >
  }
  description="Angle formed by two radii with vertex at the center of the circle."
  data={[
    {
      points: Array.from({ length: 361 }, (_, i) => {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 3, y: 0, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
      labels: [
        { text: "O", at: 0, offset: [-0.5, -0.5, 0] },
        { text: "A", at: 1, offset: [0.5, 0, 0] },
      ],
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 2.12, y: 2.12, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
      labels: [{ text: "B", at: 1, offset: [0.3, 0.3, 0] }],
    },
    {
      points: Array.from({ length: 46 }, (_, i) => {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("AMBER"),
      showPoints: false,
      labels: [{ text: "Arc AB", at: 22, offset: [1.5, 0.5, 0] }],
    },
    {
      points: Array.from({ length: 46 }, (_, i) => {
        const angle = (i * Math.PI) / 180;
        return {
          x: 0.8 * Math.cos(angle),
          y: 0.8 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("CYAN"),
      showPoints: false,
      labels: [{ text: "α", at: 22, offset: [0.3, 0.2, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 10]}
  showZAxis={false}
/>
**Properties of central angle:**
- The measure of central angle equals the measure of the arc it subtends
- If central angle = , then arc = 
### Inscribed Angle
Inscribed angle is an angle whose vertex is on the circle and whose sides are chords.
      Inscribed Angle 
    >
  }
  description="Angle whose vertex is on the circle and subtends the same arc."
  data={[
    {
      points: Array.from({ length: 361 }, (_, i) => {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
    },
    {
      points: [
        { x: 3, y: 0, z: 0 },
        { x: -2.12, y: -2.12, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
      labels: [
        { text: "A", at: 0, offset: [0.5, 0, 0] },
        { text: "C", at: 1, offset: [-0.5, -0.3, 0] },
      ],
    },
    {
      points: [
        { x: 2.12, y: 2.12, z: 0 },
        { x: -2.12, y: -2.12, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
      labels: [{ text: "B", at: 0, offset: [0.3, 0.3, 0] }],
    },
    {
      points: Array.from({ length: 46 }, (_, i) => {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("AMBER"),
      showPoints: false,
      labels: [{ text: "Arc AB", at: 22, offset: [1.5, 0.5, 0] }],
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 3, y: 0, z: 0 },
      ],
      color: getColor("CYAN"),
      showPoints: false,
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 2.12, y: 2.12, z: 0 },
      ],
      color: getColor("CYAN"),
      showPoints: false,
      labels: [{ text: "O", at: 0, offset: [1, 0.5, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 10]}
  showZAxis={false}
/>
## Relationship Between Central Angle and Inscribed Angle
  
  
If central angle and inscribed angle subtend the same arc, then the measure of inscribed angle is half the measure of central angle.
**Example application:**
      If , then{" "}
      .
    >
  }
  data={[
    {
      points: Array.from({ length: 361 }, (_, i) => {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 3, y: 0, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
      labels: [
        { text: "O", at: 0, offset: [-0.5, -0.5, 0] },
        { text: "A", at: 1, offset: [0.5, 0, 0] },
      ],
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 0.78, y: 2.9, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
      labels: [{ text: "B", at: 1, offset: [0, 0.5, 0] }],
    },
    {
      points: [
        { x: 3, y: 0, z: 0 },
        { x: -2.12, y: -2.12, z: 0 },
      ],
      color: getColor("CYAN"),
      showPoints: true,
      labels: [{ text: "C", at: 1, offset: [-0.5, -0.3, 0] }],
    },
    {
      points: [
        { x: 0.78, y: 2.9, z: 0 },
        { x: -2.12, y: -2.12, z: 0 },
      ],
      color: getColor("CYAN"),
      showPoints: false,
    },
    {
      points: Array.from({ length: 81 }, (_, i) => {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("AMBER"),
      showPoints: false,
    },
    {
      points: Array.from({ length: 20 }, (_, i) => {
        const angle = (i * 4 * Math.PI) / 180;
        return {
          x: 0.8 * Math.cos(angle),
          y: 0.8 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("PINK"),
      showPoints: false,
      labels: [{ text: "80°", at: 10, offset: [0.5, 0.2, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 10]}
  showZAxis={false}
/>
## Arc Length and Sector Area
### Arc Length
Arc length is directly proportional to the measure of central angle that subtends it.
  
  
Where:
-  = arc length
-  = measure of central angle (in degrees)
-  = radius of circle
### Sector Area
Sector is the region bounded by two radii and an arc of circle.
  
  
We can visualize the sector area using the equation above.
 {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 3, y: 0, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        { x: 1.5, y: 2.6, z: 0 },
      ],
      color: getColor("ORANGE"),
      showPoints: true,
    },
    {
      points: Array.from({ length: 61 }, (_, i) => {
        const angle = (i * Math.PI) / 180;
        return {
          x: 3 * Math.cos(angle),
          y: 3 * Math.sin(angle),
          z: 0,
        };
      }),
      color: getColor("AMBER"),
      showPoints: false,
    },
    {
      points: [
        { x: 0, y: 0, z: 0 },
        ...Array.from({ length: 61 }, (_, i) => {
          const angle = (i * Math.PI) / 180;
          return {
            x: 3 * Math.cos(angle),
            y: 3 * Math.sin(angle),
            z: 0,
          };
        }),
        { x: 0, y: 0, z: 0 },
      ],
      color: getColor("AMBER"),
      showPoints: false,
      labels: [{ text: "Sector", at: 30, offset: [0, 0, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 10]}
  showZAxis={false}
/>
## Calculating Arc Length and Sector Area
A circle has a radius of 14 cm. If the central angle that subtends an arc is 90°, determine:
1. Arc length
2. Sector area
**Solution:**
Given:  cm, 
1. Arc length:
   
     
     
     
     
   
2. Sector area:
   
     
     
     
     
   
## Practice Problems
1. A circle has a diameter of 20 cm. If an inscribed angle that subtends an arc is 30°, determine the measure of central angle that subtends the same arc!
2. In a circle with center O and radius 21 cm, there is an arc AB with central angle 120°. Calculate:
   - Arc length AB
   - Sector area AOB
3. Two inscribed angles subtend the same arc. If one inscribed angle measures 45°, determine the measure of the other inscribed angle!
### Answer Key
1. Central angle = 2 × inscribed angle = 2 × 30° = 60°
2. Given: r = 21 cm, α = 120°
   - Arc length AB =  cm ≈ 43.98 cm
   - Sector area AOB =  cm² ≈ 461.81 cm²
3. Inscribed angles that subtend the same arc have the same measure, so the other inscribed angle = 45°