# Nakafa Framework: LLM URL: /en/subject/high-school/11/mathematics/circle/circle-and-tangent-line Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/circle/circle-and-tangent-line/en.mdx Output docs content for large language models. --- import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; export const metadata = { title: "Circle and Tangent Line", description: "Discover tangent lines to circles. Learn equations, properties, and solve problems involving external points and common tangents with detailed solutions.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/18/2025", subject: "Circle", }; ## Definition of Circle Tangent Line A circle tangent line is a line that intersects the circle at exactly one point. The intersection point between the tangent line and the circle is called the point of tangency. { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [-0.5, -0.5, 0] }, { text: "P", at: 1, offset: [0.5, 0, 0] }, ], }, { points: [ { x: 3, y: -3, z: 0 }, { x: 3, y: 3, z: 0 }, ], color: getColor("CYAN"), showPoints: false, labels: [{ text: "Tangent line", at: 1, offset: [1.5, 0, 0] }], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> **Important property:** A tangent line is always perpendicular to the radius of the circle at the point of tangency. ## Equation of Circle Tangent Line ### Tangent Line Through a Point on the Circle If point lies on the circle , then the equation of the tangent line at that point is: For a circle with center : ### Tangent Line with a Given Gradient The equation of the tangent line to circle with gradient is: For a circle with center : ## Tangent Lines from an External Point From a point outside the circle, two tangent lines can be drawn to the circle. { const angle = (i * Math.PI) / 180; return { x: 2.5 * Math.cos(angle), y: 2.5 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [{ x: 0, y: 0, z: 0 }], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O", at: 0, offset: [-0.5, -0.5, 0] }], }, { points: [{ x: 5, y: 0, z: 0 }], color: getColor("CYAN"), showPoints: true, labels: [{ text: "P", at: 0, offset: [0.5, 0, 0] }], }, { points: (() => { const P = { x: 5, y: 0 }; const O = { x: 0, y: 0 }; const r = 2.5; const d = Math.sqrt((P.x - O.x) ** 2 + (P.y - O.y) ** 2); // Angle from center to external point const theta = Math.atan2(P.y - O.y, P.x - O.x); // Angle of tangent line from center const alpha = Math.asin(r / d); // First tangent point const T1x = O.x + r * Math.cos(theta + Math.PI / 2 - alpha); const T1y = O.y + r * Math.sin(theta + Math.PI / 2 - alpha); return [ { x: P.x, y: P.y, z: 0 }, { x: T1x, y: T1y, z: 0 }, ]; })(), color: getColor("TEAL"), showPoints: true, labels: [{ text: "T₁", at: 1, offset: [0.3, 0.5, 0] }], }, { points: (() => { const P = { x: 5, y: 0 }; const O = { x: 0, y: 0 }; const r = 2.5; const d = Math.sqrt((P.x - O.x) ** 2 + (P.y - O.y) ** 2); // Angle from center to external point const theta = Math.atan2(P.y - O.y, P.x - O.x); // Angle of tangent line from center const alpha = Math.asin(r / d); // Second tangent point const T2x = O.x + r * Math.cos(theta - Math.PI / 2 + alpha); const T2y = O.y + r * Math.sin(theta - Math.PI / 2 + alpha); return [ { x: P.x, y: P.y, z: 0 }, { x: T2x, y: T2y, z: 0 }, ]; })(), color: getColor("AMBER"), showPoints: true, labels: [{ text: "T₂", at: 1, offset: [0.3, -0.5, 0] }], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> ### Length of Tangent Line If is a point outside the circle with center and radius , then the length of the tangent line from P to the circle is: ## Common Tangent Lines of Two Circles ### External Common Tangent Lines External common tangent lines are lines that touch both circles and do not intersect the line connecting the two circle centers. { const angle = (i * Math.PI) / 180; return { x: -3 + 1.5 * Math.cos(angle), y: 1.5 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 + 2 * Math.cos(angle), y: 2 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: -3, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O₁", at: 0, offset: [-0.5, -0.5, 0] }, { text: "O₂", at: 1, offset: [0.5, -0.5, 0] }, ], }, { points: (() => { const O1 = { x: -3, y: 0 }; const O2 = { x: 3, y: 0 }; const r1 = 1.5; const r2 = 2; const d = Math.sqrt((O2.x - O1.x) ** 2 + (O2.y - O1.y) ** 2); // Angle between center line and common tangent const alpha = Math.asin((r2 - r1) / d); // Angle from O1 to O2 const theta = Math.atan2(O2.y - O1.y, O2.x - O1.x); // Tangent points on first circle const T1x = O1.x + r1 * Math.cos(theta + Math.PI/2 - alpha); const T1y = O1.y + r1 * Math.sin(theta + Math.PI/2 - alpha); // Tangent points on second circle const T2x = O2.x + r2 * Math.cos(theta + Math.PI/2 - alpha); const T2y = O2.y + r2 * Math.sin(theta + Math.PI/2 - alpha); // Extend the line beyond the tangent points const dx = T2x - T1x; const dy = T2y - T1y; const len = Math.sqrt(dx * dx + dy * dy); const ux = dx / len; const uy = dy / len; return [ { x: T1x - 3 * ux, y: T1y - 3 * uy, z: 0 }, { x: T2x + 3 * ux, y: T2y + 3 * uy, z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: false, labels: [{ text: "ECT", at: 1, offset: [0, 0.5, 0] }], }, { points: (() => { const O1 = { x: -3, y: 0 }; const O2 = { x: 3, y: 0 }; const r1 = 1.5; const r2 = 2; const d = Math.sqrt((O2.x - O1.x) ** 2 + (O2.y - O1.y) ** 2); // Angle between center line and common tangent const alpha = Math.asin((r2 - r1) / d); // Angle from O1 to O2 const theta = Math.atan2(O2.y - O1.y, O2.x - O1.x); // Tangent points on first circle const T1x = O1.x + r1 * Math.cos(theta - Math.PI/2 + alpha); const T1y = O1.y + r1 * Math.sin(theta - Math.PI/2 + alpha); // Tangent points on second circle const T2x = O2.x + r2 * Math.cos(theta - Math.PI/2 + alpha); const T2y = O2.y + r2 * Math.sin(theta - Math.PI/2 + alpha); // Extend the line beyond the tangent points const dx = T2x - T1x; const dy = T2y - T1y; const len = Math.sqrt(dx * dx + dy * dy); const ux = dx / len; const uy = dy / len; return [ { x: T1x - 3 * ux, y: T1y - 3 * uy, z: 0 }, { x: T2x + 3 * ux, y: T2y + 3 * uy, z: 0 }, ]; })(), color: getColor("TEAL"), showPoints: false, labels: [{ text: "ECT", at: 1, offset: [0, -0.5, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> Length of external common tangent line: where is the distance between the two circle centers. ### Internal Common Tangent Lines Internal common tangent lines are lines that touch both circles and intersect the line connecting the two circle centers. { const angle = (i * Math.PI) / 180; return { x: -3 + 1.5 * Math.cos(angle), y: 1.5 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 + 1.5 * Math.cos(angle), y: 1.5 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: -3, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O₁", at: 0, offset: [-0.5, -0.5, 0] }, { text: "O₂", at: 1, offset: [0.5, -0.5, 0] }, ], }, { points: (() => { const O1 = { x: -3, y: 0 }; const O2 = { x: 3, y: 0 }; const r1 = 1.5; const r2 = 1.5; const d = Math.sqrt((O2.x - O1.x) ** 2 + (O2.y - O1.y) ** 2); // For internal common tangent, we need to find the angle const alpha = Math.asin((r1 + r2) / d); // Angle from O1 to O2 const theta = Math.atan2(O2.y - O1.y, O2.x - O1.x); // For internal tangent, tangent points are on opposite sides // First circle: top side const T1x = O1.x + r1 * Math.cos(theta + Math.PI/2 - alpha); const T1y = O1.y + r1 * Math.sin(theta + Math.PI/2 - alpha); // Second circle: bottom side (add PI to flip to opposite side) const T2x = O2.x + r2 * Math.cos(theta + Math.PI/2 - alpha + Math.PI); const T2y = O2.y + r2 * Math.sin(theta + Math.PI/2 - alpha + Math.PI); // Extend the line beyond the tangent points const dx = T2x - T1x; const dy = T2y - T1y; const len = Math.sqrt(dx * dx + dy * dy); const ux = dx / len; const uy = dy / len; return [ { x: T1x - 2 * ux, y: T1y - 2 * uy, z: 0 }, { x: T2x + 2 * ux, y: T2y + 2 * uy, z: 0 }, ]; })(), color: getColor("PINK"), showPoints: false, labels: [{ text: "ICT", at: 0, offset: [-1, 0.5, 0] }], }, { points: (() => { const O1 = { x: -3, y: 0 }; const O2 = { x: 3, y: 0 }; const r1 = 1.5; const r2 = 1.5; const d = Math.sqrt((O2.x - O1.x) ** 2 + (O2.y - O1.y) ** 2); // For internal common tangent, we need to find the angle const alpha = Math.asin((r1 + r2) / d); // Angle from O1 to O2 const theta = Math.atan2(O2.y - O1.y, O2.x - O1.x); // For internal tangent, tangent points are on opposite sides // First circle: bottom side const T1x = O1.x + r1 * Math.cos(theta - Math.PI/2 + alpha); const T1y = O1.y + r1 * Math.sin(theta - Math.PI/2 + alpha); // Second circle: top side (add PI to flip to opposite side) const T2x = O2.x + r2 * Math.cos(theta - Math.PI/2 + alpha + Math.PI); const T2y = O2.y + r2 * Math.sin(theta - Math.PI/2 + alpha + Math.PI); // Extend the line beyond the tangent points const dx = T2x - T1x; const dy = T2y - T1y; const len = Math.sqrt(dx * dx + dy * dy); const ux = dx / len; const uy = dy / len; return [ { x: T1x - 2 * ux, y: T1y - 2 * uy, z: 0 }, { x: T2x + 2 * ux, y: T2y + 2 * uy, z: 0 }, ]; })(), color: getColor("AMBER"), showPoints: false, labels: [{ text: "ICT", at: 0, offset: [-1, -0.5, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> Length of internal common tangent line: ## Determining Tangent Line Equations ### Determining Tangent Line Through a Point on the Circle Find the equation of the tangent line to circle at point . **Solution:** Since point lies on the circle (can be verified: ), the equation of the tangent line is:
### Determining Tangent Line with a Given Gradient Find the equation of the tangent line to circle that is parallel to line . **Solution:** The gradient of line is . Equation of tangent line with gradient :
Therefore, the equations of the tangent lines are: - or - or ### Calculating the Length of Tangent Line from External Point Find the length of the tangent line from point to circle . **Solution:** Circle center and radius .
## Practice Problems 1. Find the equation of the tangent line to circle at point ! 2. Find the equation of the tangent line to circle that is perpendicular to line ! 3. From point tangent lines are drawn to circle . Find: - Length of tangent line - Coordinates of tangent points 4. Two circles are centered at with radius 2 and with radius 3. Find the length of the external common tangent line! 5. Find the equation of the tangent line to circle that passes through point ! ### Answer Key 1. **Tangent line equation at a point on the circle** Verify point on circle: Tangent line equation:
2. **Tangent line perpendicular to a given line** Gradient of line is . Since perpendicular, then . Tangent line equation:
Therefore: 3. **Tangent line from external point** - Length of tangent line:
- Coordinates of tangent points can be found using the tangent line equation from external point. 4. **External common tangent line**
5. **Tangent line through external point** Circle: Center , radius Verify point outside circle: Point is exactly on the circle! Therefore the tangent line equation is: