# Nakafa Framework: LLM
URL: /en/subject/high-school/11/mathematics/geometric-transformation/reflection-matrix-center
Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/geometric-transformation/reflection-matrix-center/en.mdx
Output docs content for large language models.
---
import { getColor } from "@repo/design-system/lib/color";
import { LineEquation } from "@repo/design-system/components/contents/line-equation";
export const metadata = {
  title: "Reflection Matrix over Center Point",
  description: "Learn reflection matrix over origin (0,0). Master point transformation using 2x2 matrices with step-by-step calculations and visual examples.",
  authors: [{ name: "Nabil Akbarazzima Fatih" }],
  date: "05/10/2025",
  subject: "Geometric Transformation",
};
## Finding the Reflection Matrix over the Origin
Reflecting a point  over the origin  results in the image . This is equivalent to a  rotation about the origin.
Now, we will find the  matrix, let's say , that represents this transformation.
We want to find  such that:
From matrix multiplication, we can write:
By equating the corresponding coefficients, we get:
- For the first row: . This means  and .
- For the second row: . This means  and .
### Reflection Matrix over the Origin
The matrix associated with reflection over the origin  is:
## Application of Reflection Matrix over the Origin
## Finding the Image of Points
Determine the images of points  and  when reflected over the origin!
**Alternative Solution:**
Using the transformation matrix :
For point :
The image of point A is .
For point :
The image of point B is .
      Reflection of Points  and {" "}
      over the Origin
    >
  }
  description={
    <>
      Visualization of reflecting point  to{" "}
       and  to{" "}
       over the origin{" "}
      .
    >
  }
  data={[
    {
      points: [{ x: 0, y: 0, z: 0 }],
      color: getColor("ROSE"),
      showPoints: true,
      labels: [{ text: "O", at: 0, offset: [0.3, -0.3, 0] }],
    }, // Origin
    // Point A and A'
    {
      points: [{ x: -1, y: 1, z: 0 }],
      color: getColor("CYAN"),
      showPoints: true,
      labels: [{ text: "A(-1,1)", at: 0, offset: [-0.7, 0.3, 0] }],
    },
    {
      points: [{ x: 1, y: -1, z: 0 }],
      color: getColor("CYAN"),
      showPoints: true,
      labels: [{ text: "A'(1,-1)", at: 0, offset: [0.3, -0.5, 0] }],
    },
    {
      points: [
        { x: -1, y: 1, z: 0 },
        { x: 1, y: -1, z: 0 },
      ],
      color: getColor("INDIGO"),
    }, // Line AA'
    // Point B and B'
    {
      points: [{ x: 3, y: -2, z: 0 }],
      color: getColor("PURPLE"),
      showPoints: true,
      labels: [{ text: "B(3,-2)", at: 0, offset: [0.3, -0.3, 0] }],
    },
    {
      points: [{ x: -3, y: 2, z: 0 }],
      color: getColor("PURPLE"),
      showPoints: true,
      labels: [{ text: "B'(-3,2)", at: 0, offset: [-0.7, 0.3, 0] }],
    },
    {
      points: [
        { x: 3, y: -2, z: 0 },
        { x: -3, y: 2, z: 0 },
      ],
      color: getColor("INDIGO"),
    }, // Line BB'
  ]}
  showZAxis={false}
  cameraPosition={[0, 0, 10]}
/>
## Exercises
1.  Determine the images of points  and  when reflected over the origin!
2.  A triangle  has vertices , , and . Determine the coordinates of the image triangle  after reflection over the origin using matrix multiplication.
### Key Answers
1.  The reflection matrix over the origin is: .
    For :
    
    Image . For :
    
    Image .
2.  Matrix of PQR vertices: .
    
    Image: , , .