Graph of  (Odd, Negative)
          >
        }
        description="Graph rises to the left and falls to the right."
        showZAxis={false}
        cameraPosition={[0, 0, 15]}
        data={[
          {
            points: Array.from({ length: 41 }, (_, i) => {
              const x = -3 + i * 0.15;
              return { x, y: -(x * x * x), z: 0 };
            }),
            color: getColor("AMBER"),
            showPoints: false,
          },
        ]}
      />
### Using End Behavior
Knowing the end behavior is very helpful for identifying the graph of a polynomial function without having to plot it in detail.
**Application Example:**
Match the following functions with their likely end behavior:
1.  
    - Leading term: 
    - Degree  (Even)
    - Leading coefficient  (Positive)
    - End behavior: Rises left (), Rises right ()
    
      
            Graph of 
          >
        }
        description={
          <>
            End Behavior: {" "}
            
          >
        }
        showZAxis={false}
        cameraPosition={[0, 0, 15]}
        data={[
          {
            points: Array.from({ length: 51 }, (_, i) => {
              const x = -2.5 + i * (4.3 / 50);
              const y = x ** 4 + 2 * x ** 3 - 2 * x - 3;
              return { x, y, z: 0 };
            }),
            color: getColor("TEAL"),
            showPoints: false,
          },
        ]}
      />
    
2.  
    - Leading term: 
    - Degree  (Odd)
    - Leading coefficient  (Negative)
    - End behavior: Rises left (), Falls right ()
    
      
            Graph of 
          >
        }
        description={
          <>
            End Behavior: {" "}
            
          >
        }
        showZAxis={false}
        cameraPosition={[0, 0, 15]}
        data={[
          {
            points: Array.from({ length: 51 }, (_, i) => {
              const x = -2.5 + i * 0.1;
              const y = -(x ** 3) + 2 * x ** 2 - x + 1;
              return { x, y, z: 0 };
            }),
            color: getColor("ORANGE"),
            showPoints: false,
          },
        ]}
      />
    
3.  
    - Leading term: 
    - Degree  (Even)
    - Leading coefficient  (Negative)
    - End behavior: Falls left (), Falls right ()
    
      
            Graph of{" "}
            
          >
        }
        description={
          <>
            End Behavior: {" "}
            
          >
        }
        showZAxis={false}
        cameraPosition={[0, 0, 15]}
        data={[
          {
            points: Array.from({ length: 111 }, (_, i) => {
              const x = -2.5 + i * (4.1 / 110);
              const y = -(x ** 6) - (11 / 4) * x ** 5 + x ** 4 + 5 * x ** 3 + 2;
              return { x, y, z: 0 };
            }),
            color: getColor("FUCHSIA"),
            showPoints: false,
          },
        ]}
      />
    
4.  
    - Leading term: 
    - Degree  (Odd)
    - Leading coefficient  (Positive)
    - End behavior: Falls left (), Rises right ()
    
      
            Graph of{" "}
            
          >
        }
        description={
          <>
            End Behavior: {" "}
            
          >
        }
        showZAxis={false}
        cameraPosition={[0, 0, 15]}
        data={[
          {
            points: Array.from({ length: 71 }, (_, i) => {
              const x = -1.2 + i * 0.035;
              const y =
                25 * x ** 5 -
                20 * x ** 4 -
                26 * x ** 3 +
                12 * x ** 2 +
                9 * x -
                1;
              return { x, y, z: 0 };
            }),
            color: getColor("INDIGO"),
            showPoints: false,
          },
        ]}
      />
    
By analyzing the leading term, we can predict the general shape of the graph at its ends.