# Nakafa Framework: LLM URL: /en/subject/high-school/12/mathematics/function-transformation/horizontal-translation Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/function-transformation/horizontal-translation/en.mdx Output docs content for large language models. --- export const metadata = { title: "Horizontal Translation", description: "Learn how horizontal translation shifts a function's graph left or right without altering its shape, enhancing your understanding of function transformations.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/26/2025", subject: "Function Transformation", }; import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; ## Basic Concepts of Horizontal Translation Horizontal translation is a geometric transformation that shifts the graph of a function left or right along the x-axis without changing the shape of the graph. Imagine sliding an object horizontally on a table, its shape remains the same, only its position changes. If we have a function , then horizontal translation produces a new function where is the translation constant. ### Rules of Horizontal Translation For any function , horizontal translation is defined as: Where: - If , the graph shifts to the **right** by units - If , the graph shifts to the **left** by units - If , there is no translation (graph remains the same) ## Visualization of Horizontal Translation Let's see how horizontal translation works on the quadratic function . Horizontal Translation of Quadratic Function } description="Notice how the graph shifts horizontally without changing the parabola shape." showZAxis={false} cameraPosition={[12, 8, 12]} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x, z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "f(x) = x²", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: (x - 3) * (x - 3), z: 0 }; }), color: getColor("ORANGE"), labels: [{ text: "g(x) = (x - 3)²", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: (x + 2) * (x + 2), z: 0 }; }), color: getColor("TEAL"), labels: [{ text: "h(x) = (x + 2)²", offset: [0.5, 1, 0] }], showPoints: false, }, ]} /> From the visualization above, we can observe: - The original function has its vertex at - Function shifts right by 3 units with vertex at - Function shifts left by 2 units with vertex at ## Horizontal Translation on Linear Functions Now let's apply the same concept to the linear function . Horizontal Translation of Linear Function } description="The line maintains the same slope, only its horizontal position changes." showZAxis={false} cameraPosition={[10, 6, 10]} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * x + 1, z: 0 }; }), color: getColor("VIOLET"), labels: [{ text: "f(x) = 2x + 1", offset: [1, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * (x - 4) + 1, z: 0 }; }), color: getColor("AMBER"), labels: [{ text: "g(x) = 2(x - 4) + 1", offset: [1, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * (x + 3) + 1, z: 0 }; }), color: getColor("CYAN"), labels: [{ text: "h(x) = 2(x + 3) + 1", offset: [1, 0.5, 0] }], showPoints: false, }, ]} /> Notice that: - All lines have the same slope of 2 - Function shifts right by 4 units - Function shifts left by 3 units ## Important Properties of Horizontal Translation ### Graph Shape Remains Unchanged Horizontal translation preserves the original shape of the graph. The vertical distance between points on the graph remains the same, only the horizontal position changes. ### Effect on Coordinate Points If point is on the graph of , then after horizontal translation by , that point becomes on the graph of . ### Domain and Range - **Domain**: Shifts by units - **Range**: Does not change after horizontal translation If the domain of the original function is , then the domain after horizontal translation becomes . ## Application Examples ### Exponential Function Example Let's look at horizontal translation on the exponential function . Horizontal Translation of Exponential Function } description="The exponential curve maintains its characteristics after horizontal translation." showZAxis={false} cameraPosition={[8, 5, 8]} data={[ { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.3; return { x, y: Math.pow(2, x), z: 0 }; }), color: getColor("INDIGO"), labels: [{ text: "f(x) = 2^x", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.3; return { x, y: Math.pow(2, x - 2), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "g(x) = 2^(x-2)", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.3; return { x, y: Math.pow(2, x + 1), z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "h(x) = 2^(x+1)", offset: [0.5, 1, 0] }], showPoints: false, }, ]} /> For exponential functions: - The horizontal asymptote remains at for all functions - The y-intercept changes due to horizontal shift - Function shifts right by 2 units - Function shifts left by 1 unit ## Difference from Vertical Translation It's important to understand the difference between horizontal and vertical translation: ### Horizontal Translation - Changes the function input: - Affects the x position of each point - Domain changes, range remains ### Vertical Translation - Changes the function output: - Affects the y position of each point - Domain remains, range changes ## Exercises 1. Given the function . Determine the equation of the function resulting from horizontal translation to the right by 3 units. 2. If the graph of function is translated horizontally to the left by 4 units, determine: - The equation of the resulting translated function - The domain of the function after translation 3. Function undergoes horizontal translation such that point becomes . Determine the translation constant value and the equation of the resulting translated function. ### Answer Key 1. Horizontal translation to the right by 3 units: Function and Its Translation Result} description="Original quadratic function and the result of horizontal translation to the right by 3 units." showZAxis={false} cameraPosition={[12, 8, 12]} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x + 2 * x + 1, z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "f(x) = x² + 2x + 1", offset: [1, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x - 4 * x + 4, z: 0 }; }), color: getColor("ORANGE"), labels: [{ text: "f'(x) = x² - 4x + 4", offset: [1, 1, 0] }], showPoints: false, }, ]} /> 2. Equation of the resulting translated function: - Translation to the left by 4 units: - Domain after translation: , so or Visualization: Function and Its Translation Result} description="Original square root function and the result of horizontal translation to the left by 4 units." showZAxis={false} cameraPosition={[8, 6, 8]} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = i * 0.25; return { x, y: Math.sqrt(x), z: 0 }; }), color: getColor("VIOLET"), labels: [{ text: "g(x) = √x", offset: [1, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = i * 0.25 - 4; if (x + 4 >= 0) { return { x, y: Math.sqrt(x + 4), z: 0 }; } return null; }).filter(Boolean), color: getColor("TEAL"), labels: [{ text: "g'(x) = √(x + 4)", offset: [1, 0.5, 0] }], showPoints: false, }, ]} /> 3. Point on becomes , meaning horizontal translation by units to the right. Equation of the translation result: Function and Its Translation Result} description="Original exponential function and the result of horizontal translation to the right by 2 units." showZAxis={false} cameraPosition={[10, 6, 10]} data={[ { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: Math.pow(3, x), z: 0 }; }), color: getColor("INDIGO"), labels: [{ text: "h(x) = 3^x", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: Math.pow(3, x - 2), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "h'(x) = 3^(x-2)", offset: [0.5, 1, 0] }], showPoints: false, }, ]} />