# Nakafa Framework: LLM URL: /en/subject/high-school/12/mathematics/function-transformation/vertical-reflection Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/function-transformation/vertical-reflection/en.mdx Output docs content for large language models. --- export const metadata = { title: "Vertical Reflection", description: "Discover vertical reflection techniques for flipping function graphs across the x-axis. Explore mirror transformations with practical examples and exercises.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/26/2025", subject: "Function Transformation", }; import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; ## Basic Concepts of Vertical Reflection Vertical reflection is a geometric transformation that reflects the graph of a function across the x-axis, like seeing the reflection of an object on the surface of calm water. Imagine an object reflected in a horizontal mirror, its shape remains the same but its position is flipped vertically. If we have a function , then vertical reflection produces a new function which is the reflection of the original function across the x-axis. ### Rules of Vertical Reflection For any function , vertical reflection is defined as: This transformation changes every point on the original graph to on the reflected graph. ## Visualization of Vertical Reflection Let's see how vertical reflection works on the quadratic function . Vertical Reflection of Quadratic Function } description="Notice how the graph reflects across the x-axis, forming an inverted reflection." showZAxis={false} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x, z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "f(x) = x²", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: -(x * x), z: 0 }; }), color: getColor("ORANGE"), labels: [{ text: "g(x) = -x²", offset: [0.5, -1, 0] }], showPoints: false, }, ]} /> From the visualization above, we can observe: - The original function opens upward with vertex at - The reflected function opens downward with vertex still at - Both graphs are symmetric across the x-axis ## Vertical Reflection on Linear Functions Now let's apply the same concept to the linear function . Vertical Reflection of Linear Function } description="The reflected line has opposite slope and opposite y-intercept." showZAxis={false} cameraPosition={[12, 6, 12]} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * x + 3, z: 0 }; }), color: getColor("VIOLET"), labels: [{ text: "f(x) = 2x + 3", offset: [1, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: -(2 * x + 3), z: 0 }; }), color: getColor("AMBER"), labels: [{ text: "g(x) = -(2x + 3) = -2x - 3", offset: [1, -0.5, 0] }], showPoints: false, }, ]} /> Notice that: - The original function has positive slope and intersects the y-axis at - The reflected function has negative slope and intersects the y-axis at - Both lines intersect at the x-axis ## Important Properties of Vertical Reflection ### X-axis as Axis of Symmetry Vertical reflection uses the x-axis as the mirror line. Every point on the original graph has the same distance to the x-axis as the corresponding point on the reflected graph. ### Effect on Coordinate Points If point is on the graph of , then the corresponding point on the graph of is . ### Domain and Range - **Domain**: Does not change after vertical reflection - **Range**: Changes to the opposite of the original range If the range of the original function is , then the range after vertical reflection becomes . ## Application Examples ### Exponential Function Example Let's look at vertical reflection on the exponential function . Vertical Reflection of Exponential Function } description="The exponential curve reflects to become a decreasing curve with horizontal asymptote below the x-axis." showZAxis={false} cameraPosition={[8, 6, 8]} data={[ { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.3; return { x, y: Math.pow(2, x), z: 0 }; }), color: getColor("INDIGO"), labels: [{ text: "f(x) = 2^x", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.3; return { x, y: -Math.pow(2, x), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "g(x) = -2^x", offset: [0.5, -1, 0] }], showPoints: false, }, ]} /> For exponential functions: - The horizontal asymptote remains at for both functions (since the x-axis reflects onto itself) - The y-intercept changes from to - The function that was originally increasing becomes decreasing ## Vertical Reflection on Trigonometric Functions Let's see how vertical reflection affects the sine function. Vertical Reflection of Sine Function } description="The reflected sine wave produces a wave that moves in opposite phase." showZAxis={false} cameraPosition={[0, 0, 12]} data={[ { points: Array.from({ length: 61 }, (_, i) => { const x = (i - 30) * 0.2; return { x, y: Math.sin(x), z: 0 }; }), color: getColor("CYAN"), labels: [{ text: "f(x) = sin(x)", offset: [1, 1.5, 0] }], showPoints: false, }, { points: Array.from({ length: 61 }, (_, i) => { const x = (i - 30) * 0.2; return { x, y: -Math.sin(x), z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "g(x) = -sin(x)", offset: [1, -1.5, 0] }], showPoints: false, }, ]} /> Notice that: - The amplitude remains the same but the wave direction is inverted - The period and frequency do not change - Maximum points become minimum points and vice versa ## Exercises 1. Given the function . Determine the equation of the function resulting from vertical reflection. 2. If the graph of function is reflected across the x-axis, determine: - The equation of the resulting reflected function - The range of the function after reflection 3. Function undergoes vertical reflection. Determine the y-intercept of the resulting reflected function. ### Answer Key 1. Vertical reflection: Function and Its Reflection Result} description="The original parabola opening upward is reflected to become a parabola opening downward." showZAxis={false} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x + 4 * x + 3, z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "f(x) = x² + 4x + 3", offset: [1, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: -(x * x + 4 * x + 3), z: 0 }; }), color: getColor("ORANGE"), labels: [{ text: "f'(x) = -x² - 4x - 3", offset: [1, -1, 0] }], showPoints: false, }, ]} /> 2. Equation of the resulting reflected function: - Vertical reflection: - Range after reflection: Since the original range of is , the range after reflection is Visualization: Function and Its Reflection Result} description="The increasing exponential curve is reflected to become a decreasing curve with a new horizontal asymptote." showZAxis={false} cameraPosition={[8, 6, 8]} data={[ { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: Math.pow(3, x) + 2, z: 0 }; }), color: getColor("VIOLET"), labels: [{ text: "g(x) = 3^x + 2", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: -(Math.pow(3, x) + 2), z: 0 }; }), color: getColor("TEAL"), labels: [{ text: "g'(x) = -3^x - 2", offset: [0.5, -1, 0] }], showPoints: false, }, ]} /> 3. The original function has a y-intercept at because . After vertical reflection: , the y-intercept becomes . Function and Its Reflection Result} description="The square root curve is reflected across the x-axis resulting in a curve opening downward." showZAxis={false} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = i * 0.25; return { x, y: Math.sqrt(x + 1), z: 0 }; }), color: getColor("INDIGO"), labels: [{ text: "h(x) = √(x + 1)", offset: [1, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = i * 0.25; return { x, y: -Math.sqrt(x + 1), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "h'(x) = -√(x + 1)", offset: [1, -0.5, 0] }], showPoints: false, }, ]} />