# Nakafa Framework: LLM
URL: /en/subject/high-school/12/mathematics/function-transformation/vertical-reflection
Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/function-transformation/vertical-reflection/en.mdx
Output docs content for large language models.
---
export const metadata = {
  title: "Vertical Reflection",
  description: "Discover vertical reflection techniques for flipping function graphs across the x-axis. Explore mirror transformations with practical examples and exercises.",
  authors: [{ name: "Nabil Akbarazzima Fatih" }],
  date: "05/26/2025",
  subject: "Function Transformation",
};
import { getColor } from "@repo/design-system/lib/color";
import { LineEquation } from "@repo/design-system/components/contents/line-equation";
## Basic Concepts of Vertical Reflection
Vertical reflection is a geometric transformation that reflects the graph of a function across the x-axis, like seeing the reflection of an object on the surface of calm water. Imagine an object reflected in a horizontal mirror, its shape remains the same but its position is flipped vertically.
If we have a function , then vertical reflection produces a new function  which is the reflection of the original function across the x-axis.
### Rules of Vertical Reflection
For any function , vertical reflection is defined as:
This transformation changes every point  on the original graph to  on the reflected graph.
## Visualization of Vertical Reflection
Let's see how vertical reflection works on the quadratic function .
Vertical Reflection of Quadratic Function >}
  description="Notice how the graph reflects across the x-axis, forming an inverted reflection."
  showZAxis={false}
  data={[
    {
      points: Array.from({ length: 41 }, (_, i) => {
        const x = (i - 20) * 0.25;
        return { x, y: x * x, z: 0 };
      }),
      color: getColor("PURPLE"),
      labels: [{ text: "f(x) = x²", offset: [0.5, 1, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 41 }, (_, i) => {
        const x = (i - 20) * 0.25;
        return { x, y: -(x * x), z: 0 };
      }),
      color: getColor("ORANGE"),
      labels: [{ text: "g(x) = -x²", offset: [0.5, -1, 0] }],
      showPoints: false,
    },
  ]}
/>
From the visualization above, we can observe:
- The original function  opens upward with vertex at 
- The reflected function  opens downward with vertex still at 
- Both graphs are symmetric across the x-axis
## Vertical Reflection on Linear Functions
Now let's apply the same concept to the linear function .
Vertical Reflection of Linear Function >}
  description="The reflected line has opposite slope and opposite y-intercept."
  showZAxis={false}
  cameraPosition={[12, 6, 12]}
  data={[
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = (i - 10) * 0.5;
        return { x, y: 2 * x + 3, z: 0 };
      }),
      color: getColor("VIOLET"),
      labels: [{ text: "f(x) = 2x + 3", offset: [1, 0.5, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = (i - 10) * 0.5;
        return { x, y: -(2 * x + 3), z: 0 };
      }),
      color: getColor("AMBER"),
      labels: [{ text: "g(x) = -(2x + 3) = -2x - 3", offset: [1, -0.5, 0] }],
      showPoints: false,
    },
  ]}
/>
Notice that:
- The original function  has positive slope and intersects the y-axis at 
- The reflected function  has negative slope and intersects the y-axis at 
- Both lines intersect at the x-axis
## Important Properties of Vertical Reflection
### X-axis as Axis of Symmetry
Vertical reflection uses the x-axis as the mirror line. Every point on the original graph has the same distance to the x-axis as the corresponding point on the reflected graph.
### Effect on Coordinate Points
If point  is on the graph of , then the corresponding point on the graph of  is .
### Domain and Range
- **Domain**: Does not change after vertical reflection
- **Range**: Changes to the opposite of the original range
If the range of the original function is , then the range after vertical reflection becomes .
## Application Examples
### Exponential Function Example
Let's look at vertical reflection on the exponential function .
Vertical Reflection of Exponential Function >}
  description="The exponential curve reflects to become a decreasing curve with horizontal asymptote below the x-axis."
  showZAxis={false}
  cameraPosition={[8, 6, 8]}
  data={[
    {
      points: Array.from({ length: 31 }, (_, i) => {
        const x = (i - 15) * 0.3;
        return { x, y: Math.pow(2, x), z: 0 };
      }),
      color: getColor("INDIGO"),
      labels: [{ text: "f(x) = 2^x", offset: [0.5, 1, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 31 }, (_, i) => {
        const x = (i - 15) * 0.3;
        return { x, y: -Math.pow(2, x), z: 0 };
      }),
      color: getColor("EMERALD"),
      labels: [{ text: "g(x) = -2^x", offset: [0.5, -1, 0] }],
      showPoints: false,
    },
  ]}
/>
For exponential functions:
- The horizontal asymptote remains at  for both functions (since the x-axis reflects onto itself)
- The y-intercept changes from  to 
- The function that was originally increasing becomes decreasing
## Vertical Reflection on Trigonometric Functions
Let's see how vertical reflection affects the sine function.
Vertical Reflection of Sine Function >}
  description="The reflected sine wave produces a wave that moves in opposite phase."
  showZAxis={false}
  cameraPosition={[0, 0, 12]}
  data={[
    {
      points: Array.from({ length: 61 }, (_, i) => {
        const x = (i - 30) * 0.2;
        return { x, y: Math.sin(x), z: 0 };
      }),
      color: getColor("CYAN"),
      labels: [{ text: "f(x) = sin(x)", offset: [1, 1.5, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 61 }, (_, i) => {
        const x = (i - 30) * 0.2;
        return { x, y: -Math.sin(x), z: 0 };
      }),
      color: getColor("ROSE"),
      labels: [{ text: "g(x) = -sin(x)", offset: [1, -1.5, 0] }],
      showPoints: false,
    },
  ]}
/>
Notice that:
- The amplitude remains the same but the wave direction is inverted
- The period and frequency do not change
- Maximum points become minimum points and vice versa
## Exercises
1. Given the function . Determine the equation of the function resulting from vertical reflection.
2. If the graph of function  is reflected across the x-axis, determine:
   - The equation of the resulting reflected function
   - The range of the function after reflection
3. Function  undergoes vertical reflection. Determine the y-intercept of the resulting reflected function.
### Answer Key
1. Vertical reflection: 
   Function  and Its Reflection Result>}
     description="The original parabola opening upward is reflected to become a parabola opening downward."
     showZAxis={false}
     data={[
       {
         points: Array.from({ length: 41 }, (_, i) => {
           const x = (i - 20) * 0.25;
           return { x, y: x * x + 4 * x + 3, z: 0 };
         }),
         color: getColor("PURPLE"),
         labels: [{ text: "f(x) = x² + 4x + 3", offset: [1, 1, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 41 }, (_, i) => {
           const x = (i - 20) * 0.25;
           return { x, y: -(x * x + 4 * x + 3), z: 0 };
         }),
         color: getColor("ORANGE"),
         labels: [{ text: "f'(x) = -x² - 4x - 3", offset: [1, -1, 0] }],
         showPoints: false,
       },
     ]}
   />
2. Equation of the resulting reflected function:
    
   - Vertical reflection: 
   - Range after reflection: Since the original range of  is , the range after reflection is 
   Visualization:
   Function  and Its Reflection Result>}
     description="The increasing exponential curve is reflected to become a decreasing curve with a new horizontal asymptote."
     showZAxis={false}
     cameraPosition={[8, 6, 8]}
     data={[
       {
         points: Array.from({ length: 31 }, (_, i) => {
           const x = (i - 15) * 0.2;
           return { x, y: Math.pow(3, x) + 2, z: 0 };
         }),
         color: getColor("VIOLET"),
         labels: [{ text: "g(x) = 3^x + 2", offset: [0.5, 1, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 31 }, (_, i) => {
           const x = (i - 15) * 0.2;
           return { x, y: -(Math.pow(3, x) + 2), z: 0 };
         }),
         color: getColor("TEAL"),
         labels: [{ text: "g'(x) = -3^x - 2", offset: [0.5, -1, 0] }],
         showPoints: false,
       },
     ]}
   />
3. The original function  has a y-intercept at  because .
   After vertical reflection: , the y-intercept becomes .
   Function  and Its Reflection Result>}
     description="The square root curve is reflected across the x-axis resulting in a curve opening downward."
     showZAxis={false}
     data={[
       {
         points: Array.from({ length: 21 }, (_, i) => {
           const x = i * 0.25;
           return { x, y: Math.sqrt(x + 1), z: 0 };
         }),
         color: getColor("INDIGO"),
         labels: [{ text: "h(x) = √(x + 1)", offset: [1, 0.5, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 21 }, (_, i) => {
           const x = i * 0.25;
           return { x, y: -Math.sqrt(x + 1), z: 0 };
         }),
         color: getColor("EMERALD"),
         labels: [{ text: "h'(x) = -√(x + 1)", offset: [1, -0.5, 0] }],
         showPoints: false,
       },
     ]}
   />