# Nakafa Framework: LLM
URL: /en/subject/high-school/12/mathematics/function-transformation/vertical-translation
Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/function-transformation/vertical-translation/en.mdx
Output docs content for large language models.
---
export const metadata = {
  title: "Vertical Translation",
  description: "Unlock vertical translation secrets to move function graphs up and down effortlessly. See how adding constants shifts graphs while preserving their shape.",
  authors: [{ name: "Nabil Akbarazzima Fatih" }],
  date: "05/26/2025",
  subject: "Function Transformation",
};
import { getColor } from "@repo/design-system/lib/color";
import { LineEquation } from "@repo/design-system/components/contents/line-equation";
## Basic Concepts of Vertical Translation
Vertical translation is a geometric transformation that shifts the graph of a function up or down along the y-axis without changing the shape of the graph. Imagine lifting or lowering an object vertically, its shape remains the same, only its position changes.
If we have a function , then vertical translation produces a new function  where  is the translation constant.
### Rules of Vertical Translation
For any function , vertical translation is defined as:
Where:
- If , the graph shifts **upward** by  units
- If , the graph shifts **downward** by  units
- If , there is no translation (graph remains the same)
## Visualization of Vertical Translation
Let's see how vertical translation works on the linear function .
Vertical Translation of Linear Function >}
  description="Notice how the graph shifts vertically without changing the slope of the line."
  showZAxis={false}
  data={[
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = (i - 10) * 0.5;
        return { x, y: 2 * x, z: 0 };
      }),
      color: getColor("PURPLE"),
      labels: [{ text: "f(x) = 2x", offset: [1, 0.5, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = (i - 10) * 0.5;
        return { x, y: 2 * x + 3, z: 0 };
      }),
      color: getColor("ORANGE"),
      labels: [{ text: "g(x) = 2x + 3", offset: [1, 0.5, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = (i - 10) * 0.5;
        return { x, y: 2 * x - 2, z: 0 };
      }),
      color: getColor("TEAL"),
      labels: [{ text: "h(x) = 2x + (-2)", offset: [1, 0.5, 0] }],
      showPoints: false,
    },
  ]}
/>
From the visualization above, we can observe:
- The original function  passes through the origin
- Function  is the result of translation upward by 3 units
- Function  is the result of translation downward by 2 units
## Vertical Translation on Quadratic Functions
Now let's apply the same concept to the quadratic function .
Vertical Translation of Quadratic Function >}
  description="The parabola shape remains the same, only its vertical position changes."
  showZAxis={false}
  data={[
    {
      points: Array.from({ length: 41 }, (_, i) => {
        const x = (i - 20) * 0.25;
        return { x, y: x * x, z: 0 };
      }),
      color: getColor("VIOLET"),
      labels: [{ text: "f(x) = x²", offset: [1, 1, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 41 }, (_, i) => {
        const x = (i - 20) * 0.25;
        return { x, y: x * x + 4, z: 0 };
      }),
      color: getColor("AMBER"),
      labels: [{ text: "g(x) = x² + 4", offset: [1, 1, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 41 }, (_, i) => {
        const x = (i - 20) * 0.25;
        return { x, y: x * x - 3, z: 0 };
      }),
      color: getColor("CYAN"),
      labels: [{ text: "h(x) = x² + (-3)", offset: [1, 1, 0] }],
      showPoints: false,
    },
  ]}
/>
Notice that:
- The vertex of the original parabola  is at 
- After vertical translation +4, the vertex of  is at 
- After vertical translation +(-3), the vertex of  is at 
## Important Properties of Vertical Translation
### Graph Shape Remains Unchanged
Vertical translation preserves the original shape of the graph. The distance between points on the graph remains the same, only the vertical position changes.
### Effect on Coordinate Points
If point  is on the graph of , then after vertical translation by , that point becomes  on the graph of .
### Domain and Range
- **Domain**: Does not change after vertical translation
- **Range**: Shifts by  units
If the range of the original function is , then the range after vertical translation  becomes .
## Application Examples
### Exponential Function Example
Let's look at vertical translation on the exponential function .
Vertical Translation of Exponential Function >}
  description="The exponential curve maintains its characteristics after vertical translation."
  showZAxis={false}
  data={[
    {
      points: Array.from({ length: 31 }, (_, i) => {
        const x = (i - 15) * 0.2;
        return { x, y: Math.pow(2, x), z: 0 };
      }),
      color: getColor("INDIGO"),
      labels: [{ text: "f(x) = 2^x", offset: [0.5, 1, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 31 }, (_, i) => {
        const x = (i - 15) * 0.2;
        return { x, y: Math.pow(2, x) + 2, z: 0 };
      }),
      color: getColor("EMERALD"),
      labels: [{ text: "g(x) = 2^x + 2", offset: [0.5, 1, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 31 }, (_, i) => {
        const x = (i - 15) * 0.2;
        return { x, y: Math.pow(2, x) - 1, z: 0 };
      }),
      color: getColor("ROSE"),
      labels: [{ text: "h(x) = 2^x + (-1)", offset: [0.5, 1, 0] }],
      showPoints: false,
    },
  ]}
/>
For exponential functions:
- The horizontal asymptote  on  shifts to  on 
- The y-intercept shifts from  to 
## Exercises
1. Given the function . Determine the equation of the function resulting from vertical translation upward by 5 units.
2. If the graph of function  is translated vertically downward by 7 units, determine:
   - The equation of the resulting translated function
   - The y-intercept after translation
3. Function  undergoes vertical translation such that point  becomes . Determine the translation constant value and the equation of the resulting translated function.
### Answer Key
1. Vertical translation upward by 5 units: 
   Function  and Its Translation Result>}
     description="Original quadratic function and the result of vertical translation upward by 5 units."
     showZAxis={false}
     data={[
       {
         points: Array.from({ length: 41 }, (_, i) => {
           const x = (i - 20) * 0.25;
           return { x, y: x * x + 4 * x + 3, z: 0 };
         }),
         color: getColor("PURPLE"),
         labels: [{ text: "f(x) = x² + 4x + 3", at: 10, offset: [0, 1.5, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 41 }, (_, i) => {
           const x = (i - 20) * 0.25;
           return { x, y: x * x + 4 * x + 3 + 5, z: 0 };
         }),
         color: getColor("ORANGE"),
         labels: [{ text: "f'(x) = x² + 4x + 8", at: 10, offset: [0, -0.5, 0] }],
         showPoints: false,
       },
     ]}
   />
2. Equation of the resulting translated function:
    
   - Translation downward by 7 units: 
   - Y-intercept: substitute  into , so the intercept point is 
   Visualization:
   Function  and Its Translation Result>}
     description="Original linear function and the result of vertical translation downward by 7 units."
     showZAxis={false}
     data={[
       {
         points: Array.from({ length: 21 }, (_, i) => {
           const x = (i - 10) * 0.5;
           return { x, y: 3 * x + 2, z: 0 };
         }),
         color: getColor("VIOLET"),
         labels: [{ text: "g(x) = 3x + 2", offset: [1, 0.5, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 21 }, (_, i) => {
           const x = (i - 10) * 0.5;
           return { x, y: 3 * x + 2 - 7, z: 0 };
         }),
         color: getColor("TEAL"),
         labels: [{ text: "g'(x) = 3x + (-5)", offset: [1, 0.5, 0] }],
         showPoints: false,
       },
     ]}
   />
3. Point  on  becomes , meaning vertical translation by  units upward.
   Equation of the translation result: 
   Function  and Its Translation Result>}
     description="Original square root function and the result of vertical translation upward by 3 units."
     showZAxis={false}
     data={[
       {
         points: Array.from({ length: 21 }, (_, i) => {
           const x = i * 0.25;
           return { x, y: Math.sqrt(x), z: 0 };
         }),
         color: getColor("INDIGO"),
         labels: [{ text: "h(x) = √x", offset: [1, 1, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 21 }, (_, i) => {
           const x = i * 0.25;
           return { x, y: Math.sqrt(x) + 3, z: 0 };
         }),
         color: getColor("EMERALD"),
         labels: [{ text: "h'(x) = √x + 3", offset: [1, 1, 0] }],
         showPoints: false,
       },
     ]}
   />