# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/11/mathematics/circle/central-angle-and-inscribed-angle Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/circle/central-angle-and-inscribed-angle/en.mdx Output docs content for large language models. --- import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; export const metadata = { title: "Central Angle and Inscribed Angle", description: "Master central and inscribed angles in circles. Learn the key relationship, theorems, and solve problems with step-by-step examples and proofs.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/18/2025", subject: "Circle", }; ## Definition of Central Angle A central angle is an angle formed by two radii of a circle with the vertex located at the center of the circle. The sides of the central angle are radii that connect the center to points on the circle. { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [-0.5, -0.5, 0] }, { text: "A", at: 1, offset: [0.5, 0, 0] }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "B", at: 1, offset: [0.3, 0.3, 0] }], }, { points: Array.from({ length: 46 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 1.2 * Math.cos(angle), y: 1.2 * Math.sin(angle), z: 0, }; }), color: getColor("CYAN"), showPoints: false, labels: [{ text: "α", at: 22, offset: [0.3, 0.2, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> In the figure above: - Point O is the center of the circle - OA and OB are radii of the circle - is the central angle - The measure of the central angle is denoted by ## Definition of Inscribed Angle An inscribed angle is an angle formed by two chords with the vertex located on the circle. The sides of the inscribed angle are chords that connect the vertex to two other points on the circle. { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 4, y: 0, z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "A", at: 0, offset: [0.5, 0, 0] }, { text: "C", at: 1, offset: [-0.5, -0.3, 0] }, ], }, { points: [ { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "B", at: 0, offset: [0.3, 0.3, 0] }], }, { points: [{ x: 0, y: 0, z: 0 }], color: getColor("CYAN"), showPoints: true, labels: [{ text: "O", at: 0, offset: [0, -0.5, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> In the figure above: - Point C is located on the circle - CA and CB are chords - is the inscribed angle - Point O is the center of the circle ## Relationship Between Central Angle and Inscribed Angle Central angles and inscribed angles that subtend the same arc have a special relationship. Let's observe this relationship. { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [-0.5, -0.5, 0] }, { text: "A", at: 1, offset: [0.5, 0, 0] }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "B", at: 1, offset: [0.3, 0.3, 0] }], }, { points: [ { x: 4, y: 0, z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("CYAN"), showPoints: true, labels: [{ text: "C", at: 1, offset: [-0.5, -0.3, 0] }], }, { points: [ { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("CYAN"), showPoints: false, }, { points: Array.from({ length: 46 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("AMBER"), showPoints: false, labels: [{ text: "Arc AB", at: 22, offset: [1.5, 0.5, 0] }], }, { points: Array.from({ length: 46 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 1.2 * Math.cos(angle), y: 1.2 * Math.sin(angle), z: 0, }; }), color: getColor("PINK"), showPoints: false, labels: [{ text: "α", at: 22, offset: [0.3, 0.2, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> ### Theorem of Central Angle and Inscribed Angle Relationship If a central angle and an inscribed angle subtend the same arc, then: - Measure of inscribed angle = × measure of central angle - Measure of central angle = 2 × measure of inscribed angle ## Proof of Central Angle and Inscribed Angle Relationship Let's prove the relationship between central angle and inscribed angle by constructing auxiliary lines. { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [-0.5, -0.5, 0] }, { text: "A", at: 1, offset: [0.5, 0, 0] }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "B", at: 1, offset: [0.3, 0.3, 0] }], }, { points: [ { x: 4, y: 0, z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("CYAN"), showPoints: true, labels: [{ text: "C", at: 1, offset: [-0.5, -0.3, 0] }], }, { points: [ { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("CYAN"), showPoints: false, }, { points: [ { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, ], color: getColor("TEAL"), showPoints: true, labels: [{ text: "D", at: 1, offset: [0.8, 0.5, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> **Proof steps:** 1. Construct line CD that passes through point O (center of the circle) 2. Note that OA = OB = OC = OD (radii of the circle) 3. Triangles AOC and BOC are isosceles triangles 4. Let and 5. Since they are isosceles triangles: and 6. Exterior angles of triangles: and 7. Therefore: ## Properties of Central Angle and Inscribed Angle 1. **Inscribed Angle Subtending a Diameter** Every inscribed angle that subtends a diameter of a circle measures 90° (right angle). { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: -4, y: 0, z: 0 }, { x: 4, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "A", at: 0, offset: [-0.5, 0, 0] }, { text: "B", at: 1, offset: [0.5, 0, 0] }, ], }, { points: [ { x: -4, y: 0, z: 0 }, { x: 0, y: 4, z: 0 }, ], color: getColor("CYAN"), showPoints: true, labels: [{ text: "C", at: 1, offset: [0, 0.5, 0] }], }, { points: [ { x: 4, y: 0, z: 0 }, { x: 0, y: 4, z: 0 }, ], color: getColor("CYAN"), showPoints: false, }, { points: [{ x: 0, y: 0, z: 0 }], color: getColor("AMBER"), showPoints: true, labels: [{ text: "O", at: 0, offset: [0, -0.5, 0] }], }, { points: (() => { const C = { x: 0, y: 4 }; const A = { x: -4, y: 0 }; const B = { x: 4, y: 0 }; // Calculate angle ACB at point C (should be 90°) const angleCA = Math.atan2(A.y - C.y, A.x - C.x); const angleCB = Math.atan2(B.y - C.y, B.x - C.x); return Array.from({ length: 16 }, (_, i) => { const t = i / 15; const angle = angleCA + t * (angleCB - angleCA); return { x: C.x + 0.8 * Math.cos(angle), y: C.y + 0.8 * Math.sin(angle), z: 0, }; }); })(), color: getColor("PINK"), showPoints: false, labels: [{ text: "90°", at: 7, offset: [0.5, -0.5, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> 2. **Inscribed Angles Subtending the Same Arc** , both angles subtend the same arc AB. { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 4, y: 0, z: 0 }, { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "A", at: 0, offset: [0.5, 0, 0] }, { text: "B", at: 1, offset: [0.3, 0.3, 0] }, ], }, { points: [ { x: 4, y: 0, z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("CYAN"), showPoints: true, labels: [{ text: "C", at: 1, offset: [-0.5, -0.3, 0] }], }, { points: [ { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("CYAN"), showPoints: false, }, { points: [ { x: 4, y: 0, z: 0 }, { x: 4 * Math.cos((3 * Math.PI) / 4), y: 4 * Math.sin((3 * Math.PI) / 4), z: 0 }, ], color: getColor("TEAL"), showPoints: true, labels: [{ text: "D", at: 1, offset: [-0.5, 0.3, 0] }], }, { points: [ { x: 4 * Math.cos(Math.PI / 4), y: 4 * Math.sin(Math.PI / 4), z: 0 }, { x: 4 * Math.cos((3 * Math.PI) / 4), y: 4 * Math.sin((3 * Math.PI) / 4), z: 0 }, ], color: getColor("TEAL"), showPoints: false, }, { points: Array.from({ length: 46 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("AMBER"), showPoints: false, labels: [{ text: "Arc AB", at: 22, offset: [1.5, 0.5, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> ## Calculating Inscribed Angle Given central angle AOB = 80°. Find the measure of inscribed angle ACB that subtends the same arc! { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [-0.5, -0.5, 0] }, { text: "A", at: 1, offset: [0.5, 0, 0] }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4 * Math.cos((80 * Math.PI) / 180), y: 4 * Math.sin((80 * Math.PI) / 180), z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "B", at: 1, offset: [0, 0.5, 0] }], }, { points: [ { x: 4, y: 0, z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("CYAN"), showPoints: true, labels: [{ text: "C", at: 1, offset: [-0.5, -0.3, 0] }], }, { points: [ { x: 4 * Math.cos((80 * Math.PI) / 180), y: 4 * Math.sin((80 * Math.PI) / 180), z: 0 }, { x: 4 * Math.cos((5 * Math.PI) / 4), y: 4 * Math.sin((5 * Math.PI) / 4), z: 0 }, ], color: getColor("CYAN"), showPoints: false, }, { points: Array.from({ length: 18 }, (_, i) => { const angle = ((i * 80) / 17) * Math.PI / 180; return { x: 1.2 * Math.cos(angle), y: 1.2 * Math.sin(angle), z: 0, }; }), color: getColor("PINK"), showPoints: false, labels: [{ text: "80°", at: 10, offset: [0.5, 0.3, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> **Solution:**
## Calculating Central Angle Given inscribed angle ACB = 35°. Find the measure of central angle AOB that subtends the same arc! **Solution:**
## Practice Problems 1. If the central angle of a circle is 120°, what is the measure of the inscribed angle that subtends the same arc? 2. Inscribed angle ABC = 45°. Find the measure of central angle AOB! 3. In a circle, inscribed angle PQR subtends a diameter. What is the measure of angle PQR? 4. Two inscribed angles subtend the same arc. If one angle measures 25°, find the measure of the other angle! ### Answer Key 1. Inscribed angle = 2. Central angle AOB = 3. Angle PQR = 90° (inscribed angle subtending a diameter is always 90°) 4. The other angle = 25° (inscribed angles subtending the same arc have equal measures)