# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/11/mathematics/circle/circle-and-arc-circle Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/circle/circle-and-arc-circle/en.mdx Output docs content for large language models. --- export const metadata = { title: "Circle and Arc Circle", description: "Learn circle fundamentals, arc types, and sector calculations. Master equations, elements, and solve arc length problems with visual examples.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/18/2025", subject: "Circle", }; import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; ## Definition of Circle A circle is the set of all points on a plane that have the same distance to a fixed point. The fixed point is called the **center of the circle**, while the same distance is called the **radius**. Mathematically, a circle with center and radius can be expressed with the equation: ### Elements of Circle How is the visualization of the circle equation? { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, labels: [{ text: "Circle", at: 0, offset: [1.5, -1, 0] }], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [0, -0.5, 0] }, { text: "r", at: 0, offset: [1.5, 0.3, 0] }, ], }, { points: [ { x: -3, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("CYAN"), labels: [{ text: "diameter", at: 0, offset: [0, -0.5, 0] }], }, { points: [ { x: 2.12, y: 2.12, z: 0 }, { x: -2.12, y: 2.12, z: 0 }, ], color: getColor("AMBER"), labels: [{ text: "chord", at: 0, offset: [0, 0.5, 0] }], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> **Important elements of circle:** - **Center of circle (O)**: Fixed point that becomes the reference of the circle - **Radius (r)**: Distance from center to any point on the circle - **Diameter (d)**: Chord that passes through the center of the circle, - **Chord**: Line segment that connects two points on the circle ## Arc of Circle Arc of circle is a part of the circumference of the circle that is bounded by two points on the circle. Arc is denoted with a curved symbol above the letters, for example . ### Types of Arc { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("VIOLET"), showPoints: false, labels: [{ text: "Minor arc", at: 45, offset: [1, 1, 0] }], }, { points: [ { x: 0, y: 3, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("TEAL"), showPoints: true, }, { points: Array.from({ length: 271 }, (_, i) => { const angle = ((i + 90) * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("TEAL"), showPoints: false, labels: [ { text: "Major arc", at: 135, offset: [-1, -1, 0], }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 0, y: 3, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> **Types of arc based on their length:** - **Minor arc**: Arc whose length is less than half the circumference of the circle - **Major arc**: Arc whose length is more than half the circumference of the circle - **Semicircle**: Arc whose length is exactly half the circumference of the circle ## Central Angle and Inscribed Angle ### Central Angle Central angle is an angle whose vertex is at the center of the circle and whose sides are radii of the circle. Central Angle } description="Angle formed by two radii with vertex at the center of the circle." data={[ { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [-0.5, -0.5, 0] }, { text: "A", at: 1, offset: [0.5, 0, 0] }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 2.12, y: 2.12, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "B", at: 1, offset: [0.3, 0.3, 0] }], }, { points: Array.from({ length: 46 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("AMBER"), showPoints: false, labels: [{ text: "Arc AB", at: 22, offset: [1.5, 0.5, 0] }], }, { points: Array.from({ length: 46 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 0.8 * Math.cos(angle), y: 0.8 * Math.sin(angle), z: 0, }; }), color: getColor("CYAN"), showPoints: false, labels: [{ text: "α", at: 22, offset: [0.3, 0.2, 0] }], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> **Properties of central angle:** - The measure of central angle equals the measure of the arc it subtends - If central angle = , then arc = ### Inscribed Angle Inscribed angle is an angle whose vertex is on the circle and whose sides are chords. Inscribed Angle } description="Angle whose vertex is on the circle and subtends the same arc." data={[ { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 3, y: 0, z: 0 }, { x: -2.12, y: -2.12, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "A", at: 0, offset: [0.5, 0, 0] }, { text: "C", at: 1, offset: [-0.5, -0.3, 0] }, ], }, { points: [ { x: 2.12, y: 2.12, z: 0 }, { x: -2.12, y: -2.12, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "B", at: 0, offset: [0.3, 0.3, 0] }], }, { points: Array.from({ length: 46 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("AMBER"), showPoints: false, labels: [{ text: "Arc AB", at: 22, offset: [1.5, 0.5, 0] }], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("CYAN"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 2.12, y: 2.12, z: 0 }, ], color: getColor("CYAN"), showPoints: false, labels: [{ text: "O", at: 0, offset: [1, 0.5, 0] }], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> ## Relationship Between Central Angle and Inscribed Angle
If central angle and inscribed angle subtend the same arc, then the measure of inscribed angle is half the measure of central angle. **Example application:** If , then{" "} . } data={[ { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [-0.5, -0.5, 0] }, { text: "A", at: 1, offset: [0.5, 0, 0] }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 0.78, y: 2.9, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "B", at: 1, offset: [0, 0.5, 0] }], }, { points: [ { x: 3, y: 0, z: 0 }, { x: -2.12, y: -2.12, z: 0 }, ], color: getColor("CYAN"), showPoints: true, labels: [{ text: "C", at: 1, offset: [-0.5, -0.3, 0] }], }, { points: [ { x: 0.78, y: 2.9, z: 0 }, { x: -2.12, y: -2.12, z: 0 }, ], color: getColor("CYAN"), showPoints: false, }, { points: Array.from({ length: 81 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("AMBER"), showPoints: false, }, { points: Array.from({ length: 20 }, (_, i) => { const angle = (i * 4 * Math.PI) / 180; return { x: 0.8 * Math.cos(angle), y: 0.8 * Math.sin(angle), z: 0, }; }), color: getColor("PINK"), showPoints: false, labels: [{ text: "80°", at: 10, offset: [0.5, 0.2, 0] }], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> ## Arc Length and Sector Area ### Arc Length Arc length is directly proportional to the measure of central angle that subtends it.
Where: - = arc length - = measure of central angle (in degrees) - = radius of circle ### Sector Area Sector is the region bounded by two radii and an arc of circle.
We can visualize the sector area using the equation above. { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 1.5, y: 2.6, z: 0 }, ], color: getColor("ORANGE"), showPoints: true, }, { points: Array.from({ length: 61 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("AMBER"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 }, ...Array.from({ length: 61 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), { x: 0, y: 0, z: 0 }, ], color: getColor("AMBER"), showPoints: false, labels: [{ text: "Sector", at: 30, offset: [0, 0, 0] }], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> ## Calculating Arc Length and Sector Area A circle has a radius of 14 cm. If the central angle that subtends an arc is 90°, determine: 1. Arc length 2. Sector area **Solution:** Given: cm, 1. Arc length:
2. Sector area:
## Practice Problems 1. A circle has a diameter of 20 cm. If an inscribed angle that subtends an arc is 30°, determine the measure of central angle that subtends the same arc! 2. In a circle with center O and radius 21 cm, there is an arc AB with central angle 120°. Calculate: - Arc length AB - Sector area AOB 3. Two inscribed angles subtend the same arc. If one inscribed angle measures 45°, determine the measure of the other inscribed angle! ### Answer Key 1. Central angle = 2 × inscribed angle = 2 × 30° = 60° 2. Given: r = 21 cm, α = 120° - Arc length AB = cm ≈ 43.98 cm - Sector area AOB = cm² ≈ 461.81 cm² 3. Inscribed angles that subtend the same arc have the same measure, so the other inscribed angle = 45°