# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/11/mathematics/circle/circle-and-chord Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/circle/circle-and-chord/en.mdx Output docs content for large language models. --- import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; export const metadata = { title: "Circle and Chord", description: "Explore circle and chord relationships. Understand theorems, properties, and solve chord length problems with clear examples and step-by-step solutions.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/18/2025", subject: "Circle", }; ## Definition of Chord A chord is a line segment that connects two points on a circle. Unlike a diameter that passes through the center of the circle, a chord can be positioned anywhere as long as both endpoints lie on the circle. { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [{ x: 0, y: 0, z: 0 }], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O", at: 0, offset: [-0.3, -0.3, 0] }], }, { points: (() => { const angle1 = Math.PI / 6; const angle2 = Math.PI / 3; return [ { x: 3 * Math.cos(angle1), y: 3 * Math.sin(angle1), z: 0 }, { x: 3 * Math.cos(angle2), y: 3 * Math.sin(angle2), z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "A", at: 0, offset: [0.3, 0.3, 0] }, { text: "B", at: 1, offset: [0.3, 0.3, 0] }, ], }, { points: (() => { const angle1 = (2 * Math.PI) / 3; const angle2 = (5 * Math.PI) / 6; return [ { x: 3 * Math.cos(angle1), y: 3 * Math.sin(angle1), z: 0 }, { x: 3 * Math.cos(angle2), y: 3 * Math.sin(angle2), z: 0 }, ]; })(), color: getColor("TEAL"), showPoints: true, labels: [ { text: "C", at: 0, offset: [-0.3, 0.3, 0] }, { text: "D", at: 1, offset: [-0.3, 0.3, 0] }, ], }, { points: (() => { const angle1 = (7 * Math.PI) / 6; const angle2 = (3 * Math.PI) / 2; return [ { x: 3 * Math.cos(angle1), y: 3 * Math.sin(angle1), z: 0 }, { x: 3 * Math.cos(angle2), y: 3 * Math.sin(angle2), z: 0 }, ]; })(), color: getColor("PINK"), showPoints: true, labels: [ { text: "E", at: 0, offset: [-0.3, -0.3, 0] }, { text: "F", at: 1, offset: [0, -0.5, 0] }, ], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> In the figure above, , , and are chords with different lengths. ## Properties of Chords ### Equal Length Chords Two chords of equal length have the same distance from the center of the circle. { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [{ x: 0, y: 0, z: 0 }], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O", at: 0, offset: [-0.3, -0.3, 0] }], }, { points: (() => { const y = 2; const x = Math.sqrt(16 - y * y); return [ { x: -x, y: y, z: 0 }, { x: x, y: y, z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "P", at: 0, offset: [-0.3, 0.3, 0] }, { text: "Q", at: 1, offset: [0.3, 0.3, 0] }, ], }, { points: (() => { const y = -2; const x = Math.sqrt(16 - y * y); return [ { x: -x, y: y, z: 0 }, { x: x, y: y, z: 0 }, ]; })(), color: getColor("TEAL"), showPoints: true, labels: [ { text: "R", at: 0, offset: [-0.3, -0.3, 0] }, { text: "S", at: 1, offset: [0.3, -0.3, 0] }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 0, y: 2, z: 0 }, ], color: getColor("AMBER"), showPoints: false, smooth: false, labels: [{ text: "d₁", at: 1, offset: [0.5, 0, 0] }], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 0, y: -2, z: 0 }, ], color: getColor("AMBER"), showPoints: false, smooth: false, labels: [{ text: "d₂", at: 1, offset: [0.5, 0, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> If , then the distance from center to chord equals the distance from to chord , that is . ### Line from Center Perpendicular to Chord A line drawn from the center of a circle perpendicular to a chord divides the chord into two equal parts. { const angle = (i * Math.PI) / 180; return { x: 5 * Math.cos(angle), y: 5 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [{ x: 0, y: 0, z: 0 }], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O", at: 0, offset: [-0.3, -0.3, 0] }], }, { points: (() => { const angle1 = Math.PI / 4; const angle2 = (3 * Math.PI) / 4; return [ { x: 5 * Math.cos(angle1), y: 5 * Math.sin(angle1), z: 0 }, { x: 5 * Math.cos(angle2), y: 5 * Math.sin(angle2), z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "A", at: 0, offset: [0.3, 0.3, 0] }, { text: "B", at: 1, offset: [-0.3, 0.3, 0] }, ], }, { points: (() => { const midAngle = (Math.PI / 4 + (3 * Math.PI) / 4) / 2; const midX = 5 * Math.cos(midAngle); const midY = 5 * Math.sin(midAngle); const chordMidX = (5 * Math.cos(Math.PI / 4) + 5 * Math.cos((3 * Math.PI) / 4)) / 2; const chordMidY = (5 * Math.sin(Math.PI / 4) + 5 * Math.sin((3 * Math.PI) / 4)) / 2; return [ { x: 0, y: 0, z: 0 }, { x: chordMidX, y: chordMidY, z: 0 }, ]; })(), color: getColor("PINK"), showPoints: true, smooth: false, labels: [{ text: "M", at: 1, offset: [0, 0.5, 0] }], }, { points: (() => { const chordMidX = (5 * Math.cos(Math.PI / 4) + 5 * Math.cos((3 * Math.PI) / 4)) / 2; const chordMidY = (5 * Math.sin(Math.PI / 4) + 5 * Math.sin((3 * Math.PI) / 4)) / 2; const perpX = chordMidX + 0.5; const perpY = chordMidY; return [ { x: chordMidX - 0.3, y: chordMidY, z: 0 }, { x: chordMidX - 0.3, y: chordMidY + 0.3, z: 0 }, { x: chordMidX, y: chordMidY + 0.3, z: 0 }, ]; })(), color: getColor("AMBER"), showPoints: false, smooth: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> In the figure above, and is the midpoint of chord , so . ## Chord Length ### Chord Length Formula To calculate the length of a chord, we can use the formula: Where: - = radius of the circle - = central angle subtending the chord (in radians) The relationship between central angle and chord length can be visualized as follows: { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [{ x: 0, y: 0, z: 0 }], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O", at: 0, offset: [-0.3, -0.3, 0] }], }, { points: (() => { const angle1 = Math.PI / 6; const angle2 = (2 * Math.PI) / 3; return [ { x: 4 * Math.cos(angle1), y: 4 * Math.sin(angle1), z: 0 }, { x: 4 * Math.cos(angle2), y: 4 * Math.sin(angle2), z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "P", at: 0, offset: [0.3, 0.3, 0] }, { text: "Q", at: 1, offset: [-0.3, 0.3, 0] }, ], }, { points: (() => { const angle1 = Math.PI / 6; return [ { x: 0, y: 0, z: 0 }, { x: 4 * Math.cos(angle1), y: 4 * Math.sin(angle1), z: 0 }, ]; })(), color: getColor("TEAL"), showPoints: false, smooth: false, }, { points: (() => { const angle2 = (2 * Math.PI) / 3; return [ { x: 0, y: 0, z: 0 }, { x: 4 * Math.cos(angle2), y: 4 * Math.sin(angle2), z: 0 }, ]; })(), color: getColor("TEAL"), showPoints: false, smooth: false, }, { points: (() => { const startAngle = Math.PI / 6; const endAngle = (2 * Math.PI) / 3; const numPoints = 20; return Array.from({ length: numPoints + 1 }, (_, i) => { const angle = startAngle + (endAngle - startAngle) * (i / numPoints); return { x: 1.5 * Math.cos(angle), y: 1.5 * Math.sin(angle), z: 0, }; }); })(), color: getColor("AMBER"), showPoints: false, labels: [{ text: "θ", at: 10, offset: [0, -0.5, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> ### Distance of Chord from Center The distance of a chord from the center of the circle can be calculated using the formula: Or if the chord length is known: ## Intersecting Chords Theorem If two chords intersect inside a circle, then the product of the segments of one chord equals the product of the segments of the other chord. Intersecting chords theorem: . } data={[ { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; return { x: 5 * Math.cos(angle), y: 5 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: (() => { const angle1 = Math.PI / 3; const angle2 = (4 * Math.PI) / 3; return [ { x: 5 * Math.cos(angle1), y: 5 * Math.sin(angle1), z: 0 }, { x: 5 * Math.cos(angle2), y: 5 * Math.sin(angle2), z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "A", at: 0, offset: [0.3, 0.3, 0] }, { text: "B", at: 1, offset: [-0.3, -0.3, 0] }, ], }, { points: (() => { const angle1 = (5 * Math.PI) / 6; const angle2 = (11 * Math.PI) / 6; return [ { x: 5 * Math.cos(angle1), y: 5 * Math.sin(angle1), z: 0 }, { x: 5 * Math.cos(angle2), y: 5 * Math.sin(angle2), z: 0 }, ]; })(), color: getColor("TEAL"), showPoints: true, labels: [ { text: "C", at: 0, offset: [-0.3, 0.3, 0] }, { text: "D", at: 1, offset: [0.3, -0.3, 0] }, ], }, { points: (() => { // Calculate intersection point P const A = { x: 5 * Math.cos(Math.PI / 3), y: 5 * Math.sin(Math.PI / 3), }; const B = { x: 5 * Math.cos((4 * Math.PI) / 3), y: 5 * Math.sin((4 * Math.PI) / 3), }; const C = { x: 5 * Math.cos((5 * Math.PI) / 6), y: 5 * Math.sin((5 * Math.PI) / 6), }; const D = { x: 5 * Math.cos((11 * Math.PI) / 6), y: 5 * Math.sin((11 * Math.PI) / 6), }; // Line AB: parametric form // Line CD: parametric form // Solve for intersection const denominator = (A.x - B.x) * (C.y - D.y) - (A.y - B.y) * (C.x - D.x); const t = ((A.x - C.x) * (C.y - D.y) - (A.y - C.y) * (C.x - D.x)) / denominator; const P = { x: A.x + t * (B.x - A.x), y: A.y + t * (B.y - A.y), }; return [{ x: P.x, y: P.y, z: 0 }]; })(), color: getColor("PINK"), showPoints: true, labels: [{ text: "P", at: 0, offset: [0.3, 0, 0] }], }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> In the figure above, the following holds: ## Inscribed Angles Subtending the Same Chord Inscribed angles that subtend the same chord have equal measures. { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: (() => { const angleA = 0; const angleB = Math.PI / 2; return [ { x: 4 * Math.cos(angleA), y: 4 * Math.sin(angleA), z: 0 }, { x: 4 * Math.cos(angleB), y: 4 * Math.sin(angleB), z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "A", at: 0, offset: [0.5, 0, 0] }, { text: "B", at: 1, offset: [0, 0.5, 0] }, ], }, { points: (() => { const angleC = (3 * Math.PI) / 4; const angleA = 0; const angleB = Math.PI / 2; return [ { x: 4 * Math.cos(angleC), y: 4 * Math.sin(angleC), z: 0 }, { x: 4 * Math.cos(angleA), y: 4 * Math.sin(angleA), z: 0 }, { x: 4 * Math.cos(angleB), y: 4 * Math.sin(angleB), z: 0 }, { x: 4 * Math.cos(angleC), y: 4 * Math.sin(angleC), z: 0 }, ]; })(), color: getColor("PINK"), showPoints: true, smooth: false, labels: [{ text: "C", at: 0, offset: [-0.3, 0.3, 0] }], }, { points: (() => { const angleD = (5 * Math.PI) / 4; const angleA = 0; const angleB = Math.PI / 2; return [ { x: 4 * Math.cos(angleD), y: 4 * Math.sin(angleD), z: 0 }, { x: 4 * Math.cos(angleA), y: 4 * Math.sin(angleA), z: 0 }, { x: 4 * Math.cos(angleB), y: 4 * Math.sin(angleB), z: 0 }, { x: 4 * Math.cos(angleD), y: 4 * Math.sin(angleD), z: 0 }, ]; })(), color: getColor("AMBER"), showPoints: true, smooth: false, labels: [{ text: "D", at: 0, offset: [-0.3, -0.3, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> In the figure above, because both subtend the same chord . ## Apothem An apothem is the shortest distance from the center of a circle to a chord, which is the perpendicular line from the center to the chord. { const angle = (i * Math.PI) / 180; return { x: 5 * Math.cos(angle), y: 5 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [{ x: 0, y: 0, z: 0 }], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O", at: 0, offset: [-0.3, -0.3, 0] }], }, { points: (() => { const y = 3; const x = Math.sqrt(25 - y * y); return [ { x: -x, y: y, z: 0 }, { x: x, y: y, z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "P", at: 0, offset: [-0.3, 0.3, 0] }, { text: "Q", at: 1, offset: [0.3, 0.3, 0] }, ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 0, y: 3, z: 0 }, ], color: getColor("PINK"), showPoints: true, smooth: false, labels: [ { text: "M", at: 1, offset: [0.5, 0, 0] }, { text: "apothem", at: 0.5, offset: [1.2, 0, 0] }, ], }, { points: [ { x: -0.3, y: 3, z: 0 }, { x: -0.3, y: 2.7, z: 0 }, { x: 0, y: 2.7, z: 0 }, ], color: getColor("AMBER"), showPoints: false, smooth: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> The length of the apothem can be calculated using the formula: Where: - = length of apothem - = radius of the circle - = length of the chord - = central angle ## Parallel Chords Two parallel chords in a circle have special properties. { const angle = (i * Math.PI) / 180; return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: (() => { const y = 2; const x = Math.sqrt(16 - y * y); return [ { x: -x, y: y, z: 0 }, { x: x, y: y, z: 0 }, ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "A", at: 0, offset: [-0.3, 0.3, 0] }, { text: "B", at: 1, offset: [0.3, 0.3, 0] }, ], }, { points: (() => { const y = -2; const x = Math.sqrt(16 - y * y); return [ { x: -x, y: y, z: 0 }, { x: x, y: y, z: 0 }, ]; })(), color: getColor("TEAL"), showPoints: true, labels: [ { text: "C", at: 0, offset: [-0.3, -0.3, 0] }, { text: "D", at: 1, offset: [0.3, -0.3, 0] }, ], }, { points: (() => { const y1 = 2; const x1 = Math.sqrt(16 - y1 * y1); const angle1 = Math.atan2(y1, -x1); const y2 = -2; const x2 = Math.sqrt(16 - y2 * y2); const angle2 = Math.atan2(y2, -x2); const numPoints = 20; return Array.from({ length: numPoints + 1 }, (_, i) => { const angle = angle1 + (angle2 - angle1) * (i / numPoints); return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }); })(), color: getColor("PINK"), showPoints: false, }, { points: (() => { const y1 = 2; const x1 = Math.sqrt(16 - y1 * y1); const angle1 = Math.atan2(y1, x1); const y2 = -2; const x2 = Math.sqrt(16 - y2 * y2); const angle2 = Math.atan2(y2, x2); const numPoints = 20; return Array.from({ length: numPoints + 1 }, (_, i) => { const angle = angle1 + (angle2 - angle1) * (i / numPoints); return { x: 4 * Math.cos(angle), y: 4 * Math.sin(angle), z: 0, }; }); })(), color: getColor("AMBER"), showPoints: false, }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> If , then arc equals arc . ## Practice Problems 1. A circle has a radius of 10 cm. If the central angle subtending a chord is 60°, determine: - The length of the chord - The distance of the chord from the center of the circle 2. Two chords and intersect at point inside a circle. If cm, cm, and cm, find the length of . 3. In a circle with radius 13 cm, there is a chord of length 24 cm. Calculate the distance of this chord from the center of the circle. 4. Two parallel chords in a circle are 3 cm and 4 cm away from the center respectively. If the radius of the circle is 5 cm, determine the lengths of both chords. 5. Prove that the longest chord in a circle is the diameter. ### Answer Key 1. **Calculating chord length and its distance from center** Given: cm, rad
2. **Intersecting chords theorem** Given: cm, cm, cm
3. **Calculating distance of chord from center** Given: cm, cm
4. **Parallel chords** Given: cm, cm, cm For the first chord:
For the second chord:
5. **Proof that diameter is the longest chord** For any chord with central angle :
The maximum value of is achieved when , that is . When , the chord passes through the center of the circle (diameter) with length:
Therefore, the diameter is the longest chord.