# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/11/mathematics/complex-number/multiplication-complex-numbers Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/complex-number/multiplication-complex-numbers/en.mdx Output docs content for large language models. --- import { LineEquation } from "@repo/design-system/components/contents/line-equation"; import { getColor } from "@repo/design-system/lib/color"; export const metadata = { title: "Multiplication of Complex Numbers", description: "Multiply complex numbers using distributive property and formula (x₁x₂-y₁y₂)+i(x₁y₂+x₂y₁). Master binomial expansion with i²=-1 examples.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/01/2025", subject: "Complex Number", }; ## Multiplying Two Complex Numbers Multiplying two complex numbers is similar to multiplying two binomial algebraic expressions. We can use the distributive property of multiplication over addition. Let's see how to multiply by .
Remember that , so we can substitute:
Now, let's group the real and imaginary parts:
So, the general formula for complex number multiplication is: ## Calculation Example Let and . Find . **Solution:** Using the distributive property:
Or using the general formula with :
The result is the same! Visualization of ,{" "} , and their product{" "} . } cameraPosition={[0, 0, 15]} showZAxis={false} data={[ { points: [ { x: 0, y: 0, z: 0 }, { x: 2, y: 1, z: 0 }, ], color: getColor("SKY"), labels: [{ text: "z₁ = 2+i", at: 1, offset: [0.5, 0.5, 0] }], cone: { position: "end" }, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 1, y: -2, z: 0 }, ], color: getColor("EMERALD"), labels: [{ text: "z₂ = 1-2i", at: 1, offset: [0.5, -0.5, 0] }], cone: { position: "end" }, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4, y: -3, z: 0 }, ], color: getColor("ROSE"), labels: [{ text: "z₁ × z₂ = 4-3i", at: 1, offset: [0.5, -0.5, 0] }], cone: { position: "end" }, }, ]} /> ## Exercise Let and . Find . ### Answer Key Using the distributive property:
Using the general formula with :