# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/11/mathematics/complex-number/scalar-multiplication-complex-numbers Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/complex-number/scalar-multiplication-complex-numbers/en.mdx Output docs content for large language models. --- import { LineEquation } from "@repo/design-system/components/contents/line-equation"; import { getColor } from "@repo/design-system/lib/color"; export const metadata = { title: "Scalar Multiplication of Complex Numbers", description: "Explore scalar multiplication effects on complex vectors with interactive 3D visualizations showing stretching, shrinking, and direction reversal.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/01/2025", subject: "Complex Number", }; ## What is Scalar Multiplication? Scalar multiplication involves multiplying a complex number by a real number (a scalar). Notice how the vector changes when multiplied by the scalar and{" "} . } cameraPosition={[0, 0, 12]} showZAxis={false} data={[ // Original vector z { points: [ { x: 0, y: 0, z: 0 }, { x: 1, y: 2, z: 0 }, ], color: getColor("SKY"), labels: [{ text: "z", at: 1, offset: [0.5, 0.5, 0] }], cone: { position: "end" }, }, // Vector 2z { points: [ { x: 0, y: 0, z: 0 }, { x: 2, y: 4, z: 0 }, // 2 * (1+2i) = 2+4i ], color: getColor("EMERALD"), labels: [{ text: "2z", at: 1, offset: [0.5, 0.5, 0] }], cone: { position: "end" }, }, // Vector -0.5z { points: [ { x: 0, y: 0, z: 0 }, { x: -0.5, y: -1, z: 0 }, // -0.5 * (1+2i) = -0.5 - i ], color: getColor("ROSE"), labels: [{ text: "-0.5z", at: 1, offset: [-0.5, -0.5, 0] }], cone: { position: "end" }, }, ]} /> From the visualization above, we can see: - Multiplying by a scalar (like 2) will **stretch** the vector in the same direction. - Multiplying by a scalar will **shrink** the vector in the same direction. - Multiplying by a scalar (like -0.5) will **reverse the direction** of the vector (by 180 degrees) and change its length according to the value of . ## Mathematical Definition If is a complex number and is a scalar (a real number), then their scalar multiplication is: This means we simply multiply the scalar by the real part () and the imaginary part () separately. ### Calculation Examples If and , then: If and , then: ## Visualization Examples Let's look at a few more examples to clarify the effect of scalar multiplication. ### Positive Scalar (> 1) Multiplication by Scalar } description={ <> Vector is stretched in the same direction when multiplied by , becoming{" "} . } cameraPosition={[0, 0, 8]} showZAxis={false} data={[ { points: [ { x: 0, y: 0, z: 0 }, { x: -2, y: 1, z: 0 }, ], color: getColor("VIOLET"), labels: [{ text: "z", at: 1, offset: [0.5, 0.5, 0] }], cone: { position: "end" }, }, { points: [ { x: 0, y: 0, z: 0 }, { x: -3, y: 1.5, z: 0 }, // 1.5 * (-2+i) ], color: getColor("LIME"), labels: [{ text: "1.5z", at: 1, offset: [-0.5, 0.5, 0] }], cone: { position: "end" }, }, ]} /> ### Positive Scalar (0 < c < 1) Multiplication by Scalar } description={ <> Vector is shrunk in the same direction when multiplied by , becoming{" "} . } cameraPosition={[0, 0, 8]} showZAxis={false} data={[ { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: -2, z: 0 }, ], color: getColor("ORANGE"), labels: [{ text: "z", at: 1, offset: [-0.5, -0.5, 0] }], cone: { position: "end" }, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 2.25, y: -1.5, z: 0 }, // 0.75 * (3-2i) ], color: getColor("TEAL"), labels: [{ text: "0.75z", at: 1, offset: [0.5, 1, 0] }], cone: { position: "end" }, }, ]} /> ### Negative Scalar (c = -1) Multiplication by -1 yields the additive inverse (negative) of the complex number. Multiplication by Scalar (Additive Inverse) } description={ <> Vector reverses direction (180°) when multiplied by , becoming{" "} . } cameraPosition={[0, 0, 10]} showZAxis={false} data={[ { points: [ { x: 0, y: 0, z: 0 }, { x: -1, y: -3, z: 0 }, ], color: getColor("FUCHSIA"), labels: [{ text: "z", at: 1, offset: [-0.5, -0.5, 0] }], cone: { position: "end" }, }, { points: [ { x: 0, y: 0, z: 0 }, { x: 1, y: 3, z: 0 }, // -1 * (-1-3i) ], color: getColor("YELLOW"), labels: [{ text: "-z", at: 1, offset: [0.5, 0.5, 0] }], cone: { position: "end" }, }, ]} />