# Nakafa Framework: LLM
URL: https://nakafa.com/en/subject/high-school/11/mathematics/function-modeling/absolute-value-function
Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/function-modeling/absolute-value-function/en.mdx
Output docs content for large language models.
---
import { getColor } from "@repo/design-system/lib/color";
import { LineEquation } from "@repo/design-system/components/contents/line-equation";
export const metadata = {
  title: "Absolute Value Function",
  description: "Master absolute value functions with interactive graphs, transformations, and step-by-step solutions. Learn properties, equations, and real applications.",
  authors: [{ name: "Nabil Akbarazzima Fatih" }],
  date: "05/18/2025",
  subject: "Functions and Their Modeling",
};
## Understanding Absolute Value Functions
An absolute value function is a function that produces positive or zero values from any input, regardless of the original sign of the input. Geometrically, absolute value can be understood as the distance of a number from the zero point on the number line.
### Mathematical Definition
For any real number , the absolute value function is defined as:
**Components of absolute value functions:**
- The symbol  is read as "absolute value of x"
- The function result is always non-negative ()
- This function is even: 
## Properties of Absolute Value Functions
Absolute value functions have several important properties that need to be understood:
**Basic properties:**
  
  
  
  
  
**Triangle inequality properties:**
  
  
## Graphs of Absolute Value Functions
The following is a visualization of the basic absolute value function:
      Graph of Function 
    >
  }
  description={
    <>
      The graph shows the characteristic shape of an absolute value function
      that forms the letter V.
    >
  }
  data={[
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: Math.abs(x), z: 0 };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "f(x) = |x|", at: 15, offset: [1, -1, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 15]}
  showZAxis={false}
/>
**Value table for function :**
|  |  |  |  |  |  |  |  |  |  |
| ---------------------- | ---------------------- | ---------------------- | ---------------------- | ---------------------- | ---------------------- | ---------------------- | ---------------------- | ---------------------- | ---------------------- |
|  |  |  |  |  |  |  |  |  |  |
## Transformations of Absolute Value Functions
Absolute value functions can be transformed in various ways:
### Vertical Translation
The function  shifts the graph upward (if ) or downward (if ).
Vertical Translation>}
  description={
    <>
      Comparison of  with{" "}
       and{" "}
      .
    >
  }
  data={[
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: Math.abs(x), z: 0 };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "f(x) = |x|", at: 12, offset: [1, 0.5, 0] }],
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: Math.abs(x) + 2, z: 0 };
      }),
      color: getColor("ORANGE"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "g(x) = |x| + 2", at: 12, offset: [1, 0.5, 0] }],
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: Math.abs(x) - 2, z: 0 };
      }),
      color: getColor("CYAN"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "h(x) = |x| - 2", at: 12, offset: [1, 0.5, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 15]}
  showZAxis={false}
/>
### Horizontal Translation
The function  shifts the graph to the right (if ) or to the left (if ).
Horizontal Translation>}
  description={
    <>
      Comparison of  with{" "}
       and{" "}
      .
    >
  }
  data={[
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: Math.abs(x), z: 0 };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "f(x) = |x|", at: 12, offset: [1, 0.5, 0] }],
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: Math.abs(x - 3), z: 0 };
      }),
      color: getColor("PINK"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "g(x) = |x - 3|", at: 12, offset: [3, 0.5, 0] }],
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: Math.abs(x + 3), z: 0 };
      }),
      color: getColor("AMBER"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "h(x) = |x + 3|", at: 12, offset: [1, 0.5, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 15]}
  showZAxis={false}
/>
### Stretching and Compression
The function  changes the slope of the graph:
- If : the graph becomes steeper
- If : the graph becomes gentler
- If : the graph is inverted (reflection across the x-axis)
To make it easier to understand, let's look at the following example:
Stretching and Compression>}
  description={
    <>
      Comparison of  with{" "}
       and .
    >
  }
  data={[
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: Math.abs(x), z: 0 };
      }),
      color: getColor("PURPLE"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "f(x) = |x|", at: 12, offset: [1, 0.5, 0] }],
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: 2 * Math.abs(x), z: 0 };
      }),
      color: getColor("TEAL"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "g(x) = 2|x|", at: 12, offset: [1, 1, 0] }],
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i - 10;
        return { x, y: 0.5 * Math.abs(x), z: 0 };
      }),
      color: getColor("ROSE"),
      showPoints: false,
      smooth: false,
      labels: [{ text: "h(x) = 0.5|x|", at: 12, offset: [3, 0.2, 0] }],
    },
  ]}
  cameraPosition={[0, 0, 15]}
  showZAxis={false}
/>
## General Form of Absolute Value Functions
The general form of an absolute value function is:
where:
- : stretching/compression factor and reflection
- : horizontal translation
- : vertical translation
- The vertex is located at 
**Transformation table:**
| Parameter                       | Value        | Effect on Graph       |
| ------------------------------- | ------------ | --------------------- |
|      | Positive > 1 | Graph becomes steeper |
|  | Positive < 1 | Graph becomes gentler |
|      | Negative     | Graph is inverted     |
|      | Positive     | Shift to the right    |
|      | Negative     | Shift to the left     |
|      | Positive     | Shift upward          |
|      | Negative     | Shift downward        |
## Absolute Value Equations and Inequalities
**Solving absolute value equations:**
To solve  with :
  
**Example:** Solve 
  
  
  
**Solving absolute value inequalities:**
For  with :
For  with :
## Exercises
1. Determine the value of  for 
2. Solve the equation 
3. Solve the inequality 
4. Determine the vertex of the function 
5. The distance between two cities is 150 km. If city A is located at coordinate -50 km, where is city B located?
### Answer Key
1. **Calculating function values for various inputs:**
   Substitute each value of x into the function :
   
     
     
     
     
   
2. **Solving absolute value equations:**
   For the equation , we use the definition of absolute value which produces two possibilities:
   
     
     
     
   
3. **Solving absolute value inequalities:**
   For , we use the property that  is equivalent to :
   
     
     
     
   
   So the solution set is .
4. **Determining the vertex:**
   From the function , we can identify the parameters:
   -  (stretching factor)
   -  (horizontal translation)
   -  (vertical translation)
   The vertex is located at .
5. **Calculating position based on distance:**
   Given that the distance between cities A and B is 150 km, with city A at coordinate -50 km. Let city B be at coordinate :
   
     
     
     
   
   So city B can be located at coordinate 100 km or -200 km.