# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/11/mathematics/function-modeling/asymptote Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/function-modeling/asymptote/en.mdx Output docs content for large language models. --- import { LineEquation } from "@repo/design-system/components/contents/line-equation"; import { getColor } from "@repo/design-system/lib/color"; export const metadata = { title: "Asymptote", description: "Discover vertical, horizontal, and oblique asymptotes with step-by-step examples and interactive visualizations. Master rational function graphing techniques.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/18/2025", subject: "Functions and Their Modeling", }; ## What is an Asymptote? Have you ever noticed a function graph that approaches a line but never touches it? Well, that line is called an **asymptote**! An asymptote is a straight line that is approached by a function graph when its variable value approaches infinity or approaches a certain value. Imagine like you're walking towards a wall but never actually touching it, that's the concept of an asymptote. ## Types of Asymptotes There are three types of asymptotes you need to know: ### Vertical Asymptote A vertical asymptote is a vertical line that the graph approaches when the function value approaches positive or negative infinity. **Definition:** The line is a vertical asymptote if: - When approaches from the left, - When approaches from the right, **How to find:** For rational functions, vertical asymptotes occur when denominator = 0 (and numerator ≠ 0), or when and . ### Horizontal Asymptote A horizontal asymptote is a horizontal line that the graph approaches when approaches positive or negative infinity. **Definition:** The line is a horizontal asymptote if: - - ### Oblique Asymptote (Oblique) An oblique asymptote is a slanted line that the graph approaches when approaches infinity. **Definition:** The line is an oblique asymptote if: ## Asymptotes in Rational Functions Let's focus on rational functions where and are polynomials. ### Finding Vertical Asymptotes **Steps:** 1. Find the value of that makes 2. Check if at that value 3. If yes, then there is a vertical asymptote at **Example:** Determine the vertical asymptote of **Solution:** - Denominator is zero when: , so - When , numerator = - Therefore, vertical asymptote: Let's look at the function behavior around the vertical asymptote: | | | Description | | -------------------------- | ---------------------------------------------------------------------- | ---------------------------------------- | | | | Approaches | | | | Getting more negative | | | | Approaches | | | | Getting more positive | Graph of with Vertical Asymptote } description={ <> Notice how the graph approaches the vertical line{" "} without ever touching it. } data={[ { points: [ { x: -2, y: 0.25, z: 0 }, { x: -1, y: 0.67, z: 0 }, { x: 0, y: 1.5, z: 0 }, { x: 1, y: 4, z: 0 }, { x: 1.5, y: 9, z: 0 }, { x: 1.8, y: 29, z: 0 }, { x: 1.9, y: 49, z: 0 }, ], color: getColor("PURPLE"), showPoints: false, labels: [{ text: "x → 2^{-}", at: 1, offset: [-1, 0.5, 0] }], }, { points: [ { x: 2.1, y: 51, z: 0 }, { x: 2.2, y: 31, z: 0 }, { x: 2.5, y: 11, z: 0 }, { x: 3, y: 6, z: 0 }, { x: 4, y: 3.5, z: 0 }, { x: 5, y: 2.67, z: 0 }, { x: 6, y: 2.25, z: 0 }, ], color: getColor("PURPLE"), showPoints: false, labels: [{ text: "x → 2^{+}", at: 6, offset: [0.5, -0.5, 0] }], }, { points: [ { x: 2, y: -50, z: 0 }, { x: 2, y: 0, z: 0 }, { x: 2, y: 50, z: 0 }, ], color: getColor("ORANGE"), showPoints: false, labels: [{ text: "x = 2", at: 1, offset: [1, -0.5, 0] }], }, ]} cameraPosition={[10, 6, 10]} showZAxis={false} /> ### Finding Horizontal Asymptotes **Rules for rational functions:** Let the degree of numerator = and degree of denominator = 1. If : Horizontal asymptote is 2. If : Horizontal asymptote is (ratio of leading coefficients) 3. If : No horizontal asymptote (but there might be an oblique asymptote) **Example:** Determine the horizontal asymptote of: 1. **Solution:** - Degree of numerator = 1, degree of denominator = 2 - Since 1 < 2, horizontal asymptote: 2. **Solution:** - Degree of numerator = 2, degree of denominator = 2 - Since degrees are equal, horizontal asymptote: Let's see how the function approaches the horizontal asymptote: | | | Approaches | | -------------------------- | ----------------------------------------------------------------------------------- | ------------------------- | | | | | | | | | | | | | Graph of with Horizontal Asymptote } description={ <> The graph approaches when{" "} . } data={[ { points: Array.from({ length: 40 }, (_, i) => { const x = -10 + i * 0.5; const y = (3 * x * x - 1) / (2 * x * x + 5); return { x, y, z: 0 }; }), color: getColor("TEAL"), showPoints: false, }, { points: [ { x: -10, y: 1.5, z: 0 }, { x: 0, y: 1.5, z: 0 }, { x: 10, y: 1.5, z: 0 }, ], color: getColor("AMBER"), showPoints: false, labels: [{ text: "y = 1.5", at: 1, offset: [2, 0.5, 0] }], }, ]} cameraPosition={[10, 6, 10]} showZAxis={false} /> ### Finding Oblique Asymptotes Oblique asymptotes appear when the degree of numerator = degree of denominator + 1. **How to find:** Perform polynomial division. **Example:** Determine the oblique asymptote of **Solution:** Using polynomial division:
When , the term Therefore, oblique asymptote: Graph of with Oblique Asymptote } description={ <> The graph approaches the line when{" "} . } data={[ { points: Array.from({ length: 30 }, (_, i) => { const x = -8 + i * 0.3; if (Math.abs(x - 1) < 0.1) return null; const y = (x * x + 2 * x - 1) / (x - 1); return { x, y, z: 0 }; }).filter((p) => p !== null), color: getColor("PURPLE"), showPoints: false, }, { points: Array.from({ length: 30 }, (_, i) => { const x = 1.3 + i * 0.3; const y = (x * x + 2 * x - 1) / (x - 1); return { x, y, z: 0 }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: -8, y: -5, z: 0 }, { x: 0, y: 3, z: 0 }, { x: 10, y: 13, z: 0 }, ], color: getColor("PINK"), showPoints: false, labels: [{ text: "y = x + 3", at: 1, offset: [3, 1.5, 0] }], }, { points: [ { x: 1, y: -10, z: 0 }, { x: 1, y: 0, z: 0 }, { x: 1, y: 15, z: 0 }, ], color: getColor("ORANGE"), showPoints: false, labels: [{ text: "x = 1", at: 1, offset: [1, -0.5, 0] }], }, ]} cameraPosition={[10, 6, 10]} showZAxis={false} /> ## Drawing Graphs with Asymptotes Asymptotes are very helpful in drawing function graphs. Here are the steps: 1. **Determine all asymptotes** (vertical, horizontal, or oblique) 2. **Draw asymptotes with dashed lines** 3. **Find intercepts** with the axes 4. **Determine some additional points** 5. **Draw the curve** that approaches the asymptotes **Complete Example:** Draw the graph of **Step 1:** Find asymptotes - Vertical asymptote: (denominator = 0) - Horizontal asymptote: (same degree, coefficient ratio = 1/1) **Step 2:** Intercepts - y-axis: - x-axis: , so **Step 3:** Behavior around asymptotes - When : - When : - When : **Step 4:** Value table to help with drawing | | | Description | | ------------------------ | ----------------------------------------------------------------- | -------------------------------- | | | | Point in quadrant I | | | | x-axis intercept | | | | y-axis intercept | | | | Approaching vertical asymptote | | | | Right of asymptote | | | | Approaching horizontal asymptote | Complete Graph of } description={ <> Graph with vertical asymptote and horizontal asymptote . } data={[ { points: Array.from({ length: 40 }, (_, i) => { const x = -5 + i * 0.175; if (Math.abs(x - 2) < 0.05) return null; const y = (x + 1) / (x - 2); if (Math.abs(y) > 20) return null; return { x, y, z: 0 }; }).filter((p) => p !== null), color: getColor("SKY"), showPoints: false, }, { points: Array.from({ length: 40 }, (_, i) => { const x = 2.05 + i * 0.175; const y = (x + 1) / (x - 2); if (Math.abs(y) > 20) return null; return { x, y, z: 0 }; }).filter((p) => p !== null), color: getColor("SKY"), showPoints: false, }, { points: [ { x: 2, y: -20, z: 0 }, { x: 2, y: 0, z: 0 }, { x: 2, y: 20, z: 0 }, ], color: getColor("ORANGE"), showPoints: false, labels: [{ text: "x = 2", at: 1, offset: [2, -0.5, 0] }], }, { points: [ { x: -5, y: 1, z: 0 }, { x: 0, y: 1, z: 0 }, { x: 9, y: 1, z: 0 }, ], color: getColor("AMBER"), showPoints: false, labels: [{ text: "y = 1", at: 1, offset: [1, 0.5, 0] }], }, { points: [{ x: -1, y: 0, z: 0 }], color: getColor("TEAL"), showPoints: true, labels: [{ text: "(-1, 0)", at: 0, offset: [-1, -0.5, 0] }], }, { points: [{ x: 0, y: -0.5, z: 0 }], color: getColor("TEAL"), showPoints: true, labels: [{ text: "(0, -0.5)", at: 0, offset: [-1.5, -1, 0] }], }, ]} cameraPosition={[10, 6, 10]} showZAxis={false} /> ## Practice Problems 1. Determine all asymptotes of 2. Determine the asymptotes of 3. The average cost function of a product is . Determine the minimum cost per unit that can be achieved. 4. Draw a sketch of the graph complete with its asymptotes. ### Answer Key **Answer 1:** - Degree of numerator (2) = degree of denominator (1) + 1 - There is an oblique asymptote. By division: - Vertical asymptote: - Oblique asymptote: **Answer 2:** - Vertical asymptote: , so and - But when , numerator = 0, so is not an asymptote - When , numerator = 0, so is not an asymptote - Horizontal asymptote: (same degree, ratio = 1/1) **Answer 3:** When , So minimum cost per unit = 3 **Answer 4:** - Vertical asymptotes: and - Horizontal asymptote: (degree of numerator < degree of denominator) - The graph has three separate parts due to two vertical asymptotes Value table for : | | | Description | | -------------------------- | ------------------------------------------------------- | ----------- | | | | Left part | | | | Middle part | | | | Intercept | | | | Middle part | | | | Right part | Graph of with Two Vertical Asymptotes } description={ <> Graph with vertical asymptotes at and{" "} , and horizontal asymptote{" "} . } data={[ { points: Array.from({ length: 20 }, (_, i) => { const x = -3 + i * 0.095; const y = x / (x * x - 1); if (Math.abs(y) > 10) return null; return { x, y, z: 0 }; }).filter((p) => p !== null), color: getColor("PURPLE"), showPoints: false, }, { points: Array.from({ length: 20 }, (_, i) => { const x = -0.95 + i * 0.09; const y = x / (x * x - 1); if (Math.abs(y) > 10) return null; return { x, y, z: 0 }; }).filter((p) => p !== null), color: getColor("PURPLE"), showPoints: false, }, { points: Array.from({ length: 20 }, (_, i) => { const x = 1.05 + i * 0.095; const y = x / (x * x - 1); if (Math.abs(y) > 10) return null; return { x, y, z: 0 }; }).filter((p) => p !== null), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: -1, y: -10, z: 0 }, { x: -1, y: 0, z: 0 }, { x: -1, y: 10, z: 0 }, ], color: getColor("ORANGE"), showPoints: false, labels: [{ text: "x = -1", at: 1, offset: [-2, 1, 0] }], }, { points: [ { x: 1, y: -10, z: 0 }, { x: 1, y: 0, z: 0 }, { x: 1, y: 10, z: 0 }, ], color: getColor("ORANGE"), showPoints: false, labels: [{ text: "x = 1", at: 1, offset: [2, -0.5, 0] }], }, { points: [ { x: -3, y: 0, z: 0 }, { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 }, ], color: getColor("AMBER"), showPoints: false, labels: [{ text: "y = 0", at: 1, offset: [1, 0.5, 0] }], }, ]} cameraPosition={[10, 6, 10]} showZAxis={false} />