# Nakafa Framework: LLM URL: /en/subject/high-school/11/mathematics/function-modeling/logarithmic-function-graph Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/function-modeling/logarithmic-function-graph/en.mdx Output docs content for large language models. --- import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; export const metadata = { title: "Logarithmic Function Graph", description: "Learn to draw logarithmic function graphs step-by-step. Explore transformations, asymptotes, and key characteristics with interactive visualizations.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/18/2025", subject: "Functions and Their Modeling", }; ## Understanding Logarithmic Function Graphs Have you ever noticed how sound decreases in intensity as we move away from its source? Or how the pH of a solution changes? These phenomena can be modeled with logarithmic function graphs. Let's learn the characteristics and how to draw logarithmic function graphs. ## Characteristics of Logarithmic Graphs Logarithmic function graphs have a distinctive shape different from other functions. Let's look at the basic graph for various base values. Logarithmic function graphs for . } data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.1; return { x, y: Math.log2(x), z: 0 }; }), color: getColor("SKY"), labels: [{ text: "y = log₂ x", at: 70, offset: [0.5, -0.4, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.1; return { x, y: Math.log10(x), z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "y = log₁₀ x", at: 70, offset: [0.5, -0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.1; return { x, y: Math.log(x), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "y = ln x", at: 70, offset: [0.5, -0.5, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> ### Important Properties of Logarithmic Graphs For function with : 1. **Domain**: (positive numbers only) 2. **Range**: All real numbers () 3. **x-intercept**: because 4. **Vertical asymptote**: y-axis () 5. **Function behavior**: - Increasing for - Decreasing for ## Drawing Logarithmic Function Graphs Let's learn the steps to draw logarithmic function graphs with concrete examples. 1. **Drawing ** To draw this graph, we create a table of values by choosing values that are powers of 2: | | | | | 1 | 2 | 4 | 8 | | ---------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- | --- | --- | --- | --- | | | -3 | -2 | -1 | 0 | 1 | 2 | 3 | Graph of } description="Notice the important points and the curve shape." data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.01; return { x, y: Math.log2(x), z: 0 }; }), color: getColor("SKY"), labels: [{ text: "y = log₂ x", at: 50, offset: [0.5, 1, 0] }], showPoints: false, }, { points: [ { x: 0.125, y: -3, z: 0 }, { x: 0.25, y: -2, z: 0 }, { x: 0.5, y: -1, z: 0 }, { x: 1, y: 0, z: 0 }, { x: 2, y: 1, z: 0 }, { x: 4, y: 2, z: 0 }, { x: 8, y: 3, z: 0 }, ], color: getColor("ROSE"), showPoints: true, labels: [{ text: "(1, 0)", at: 3, offset: [0.5, 0.5, 0] }], }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> 2. **Drawing ** For base , the graph will be decreasing: | | | | | 1 | 3 | 9 | 27 | | ---------------------------------------------- | ---------------------------------- | --------------------------------- | --------------------------------- | --- | --- | --- | --- | | | 3 | 2 | 1 | 0 | -1 | -2 | -3 | Graph of } description="Graph decreases because the base is less than 1." data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.01; return { x, y: Math.log(x) / Math.log(1 / 3), z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "y = log₁/₃ x", at: 30, offset: [0.5, -1, 0] }], showPoints: false, }, { points: [ { x: 1 / 27, y: 3, z: 0 }, { x: 1 / 9, y: 2, z: 0 }, { x: 1 / 3, y: 1, z: 0 }, { x: 1, y: 0, z: 0 }, { x: 3, y: -1, z: 0 }, { x: 9, y: -2, z: 0 }, ], color: getColor("PURPLE"), showPoints: true, labels: [{ text: "(1, 0)", at: 3, offset: [0.5, 0.5, 0] }], }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> ## Comparing Logarithmic Graphs Let's compare logarithmic graphs with different bases on one coordinate system: Comparison of Logarithmic Graphs and{" "} . } description="Notice the difference in graph direction." data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 8 + 0.01; return { x, y: Math.log2(x), z: 0 }; }), color: getColor("SKY"), labels: [ { text: "y = log₂ x (increasing)", at: 40, offset: [0.5, 0.5, 0] }, ], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 8 + 0.01; return { x, y: Math.log(x) / Math.log(0.5), z: 0 }; }), color: getColor("ROSE"), labels: [ { text: "y = log₀.₅ x (decreasing)", at: 40, offset: [0.5, -0.5, 0] }, ], showPoints: false, }, { points: [ { x: 0, y: -4, z: 0 }, { x: 0, y: 4, z: 0 }, ], color: getColor("PURPLE"), labels: [{ text: "x = 0 (asymptote)", at: 1, offset: [0.5, 0, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> | Property | | | | ------------------ | ---------------------------- | ------------------------------- | | Graph direction | Increasing (monotonic) | Decreasing (monotonic) | | Domain | | | | Range | All real numbers | All real numbers | | x-intercept | | | | Vertical asymptote | | | ## Transformations of Logarithmic Graphs Logarithmic graphs can be transformed in various ways: ### Vertical Translation We can shift the logarithmic function graph by adding or subtracting a constant to the function.
Graph shifts up if and down if{" "} . } data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.1; return { x, y: Math.log2(x), z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "y = log₂ x", at: 40, offset: [0.5, -1, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.1; return { x, y: Math.log2(x) + 2, z: 0 }; }), color: getColor("SKY"), labels: [{ text: "y = log₂ x + 2", at: 40, offset: [0.5, -1, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.1; return { x, y: Math.log2(x) - 2, z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "y = log₂ x - 2", at: 40, offset: [0.5, -1, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} />
### Horizontal Translation We can shift the logarithmic function graph by adding or subtracting a constant to the function.
Graph shifts right if and left if{" "} . } data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.1; return { x, y: Math.log2(x), z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "y = log₂ x", at: 40, offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 8 + 2.1; return { x, y: Math.log2(x - 2), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "y = log₂(x - 2)", at: 40, offset: [1, -1, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} />
## Exercises 1. Create a value table and draw the graphs of: - - 2. Determine the domain, range, and asymptote of function . 3. If and , determine: - The shift of graph relative to - The domain of 4. Sketch the graph of and determine the y-intercept. ### Answer Key 1. Value tables: For : | | | | 1 | 3 | 9 | |-------------------------|-------------------------------------|------------------------------------|----|----|----| | | -2 | -1 | 0 | 1 | 2 | For : | | | | 1 | 2 | 4 | |-------------------------|-------------------------------------|------------------------------------|----|----|----| | | 2 | 1 | 0 | -1 | -2 | 2. For : - Domain: - Range: All real numbers - Vertical asymptote: 3. For : - Shift: 4 units to the right - Domain: 4. For : - Graph shifted 2 units up - There is no y-intercept because the domain is
Sketch of Graph } description="Logarithmic graph base 3 shifted 2 units up." data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.01; return { x, y: Math.log(x) / Math.log(3), z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "y = log₃ x", at: 40, offset: [0.5, -0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 10 + 0.01; return { x, y: Math.log(x) / Math.log(3) + 2, z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "y = log₃ x + 2", at: 50, offset: [0.5, 1, 0] }], showPoints: false, }, { points: [ { x: 1 / 9, y: Math.log(1 / 9) / Math.log(3) + 2, z: 0 }, { x: 1 / 3, y: Math.log(1 / 3) / Math.log(3) + 2, z: 0 }, { x: 1, y: 2, z: 0 }, { x: 3, y: 3, z: 0 }, { x: 9, y: 4, z: 0 }, ], color: getColor("ROSE"), showPoints: true, labels: [ { text: "(1, 2)", at: 2, offset: [0, 1, 0] }, { text: "(3, 3)", at: 3, offset: [0, 0.5, 0] }, ], }, { points: [ { x: -0.5, y: 2, z: 0 }, { x: 10, y: 2, z: 0 }, ], color: getColor("PURPLE"), labels: [{ text: "y = 2", at: 0, offset: [-0.5, 0.3, 0] }], showPoints: false, }, { points: [ { x: 0, y: -2, z: 0 }, { x: 0, y: 5, z: 0 }, ], color: getColor("PURPLE"), labels: [{ text: "x = 0 (asymptote)", at: 1, offset: [0.5, 0, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} />