# Nakafa Framework: LLM URL: /en/subject/high-school/11/mathematics/function-modeling/trigonometric-function-graph Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/function-modeling/trigonometric-function-graph/en.mdx Output docs content for large language models. --- import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; export const metadata = { title: "Trigonometric Function Graph", description: "Master trigonometric function graphs with interactive visualizations. Learn sine, cosine, tangent graphs, amplitude, period, transformations & conversions.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/18/2025", subject: "Functions and Their Modeling", }; ## Understanding Trigonometric Function Graphs Have you ever seen ocean waves? Their up-and-down movement forms patterns that repeat regularly. It turns out that these patterns can be modeled with trigonometric functions. Before studying trigonometric function graphs, we need to understand angle measurement in radians. In daily life, we are accustomed to using degrees. However, in advanced mathematics, radians are more frequently used. ## Converting Degrees and Radians One complete rotation of a circle is 360° or radians. This relationship gives us conversion formulas:
### Conversion Examples Converting degrees to radians:
Converting radians to degrees:
## What are Amplitude and Period? Before studying trigonometric function graphs, it's important to understand two key concepts: **amplitude** and **period**. ### Amplitude Amplitude is the maximum distance from the center line (x-axis) to the peak or trough of the graph. For functions or , the amplitude is . { const x = (i / 99) * 2 * Math.PI; return { x, y: 2 * Math.sin(x), z: 0 }; }), color: getColor("SKY"), labels: [{ text: "Amplitude = 2", at: 25, offset: [0, 0.5, 0] }], showPoints: false, }, { points: [ { x: Math.PI / 2, y: 0, z: 0 }, { x: Math.PI / 2, y: 2, z: 0 }, ], color: getColor("ROSE"), showPoints: false, }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> ### Period Period is the length of interval needed for one complete cycle. For functions or , the period is . { const x = (i / 99) * 4 * Math.PI; return { x, y: Math.sin(x), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "Period = 2π", at: 25, offset: [0, 1.5, 0] }], showPoints: false, }, { points: [ { x: 0, y: -1.2, z: 0 }, { x: 2 * Math.PI, y: -1.2, z: 0 }, ], color: getColor("PURPLE"), lineWidth: 2, showPoints: false, cone: { position: "both" }, labels: [ { text: "← 2π →", at: 1, offset: [-3, -0.5, 0], color: getColor("PURPLE"), }, ], }, ]} cameraPosition={[0, 0, 18]} showZAxis={false} /> ### General Formulas For trigonometric functions in the form: - and :
- :
## Sine Function Graph The function is a periodic function with period . This means its graph pattern repeats every interval. Graph of } description="Notice how the graph forms waves that repeat regularly." data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.sin(x), z: 0 }; }), color: getColor("SKY"), labels: [{ text: "y = sin x", at: 25, offset: [1.5, 0.5, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> **Characteristics of** **graph**: - **Period**: (graph repeats every units) - **Amplitude**: 1 (maximum - minimum value divided by 2) - **Domain**: All real numbers - **Range**: - **x-intercepts**: where is an integer - **Maximum value**: 1 at - **Minimum value**: -1 at ## Cosine Function Graph The function has a shape similar to sine, but shifted to the left. Graph of } description="Compare with the sine graph. Notice the shift." data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.cos(x), z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "y = cos x", at: 25, offset: [0.3, 1.5, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> **Characteristics of** **graph**: - **Period**: - **Amplitude**: 1 - **Domain**: All real numbers - **Range**: - **x-intercepts**: - **Maximum value**: 1 at - **Minimum value**: -1 at ### Comparison of Sin and Cos Notice that . } data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.sin(x), z: 0 }; }), color: getColor("SKY"), labels: [{ text: "y = sin x", at: 25, offset: [1.5, -1.5, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.cos(x), z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "y = cos x", at: 75, offset: [1.5, 2.5, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> ## Tangent Function Graph The function differs from sin and cos because it has vertical asymptotes. Graph of } description="Notice the dashed lines showing vertical asymptotes." data={[ // Tangent function ...Array.from({ length: 3 }, (_, periodIndex) => { const offset = (periodIndex - 1) * Math.PI; return { points: Array.from({ length: 50 }, (_, i) => { const x = offset + (i / 49) * Math.PI * 0.9 - Math.PI * 0.45; return { x, y: Math.tan(x), z: 0 }; }), color: getColor("EMERALD"), labels: periodIndex === 1 ? [{ text: "y = tan x", at: 25, offset: [2, 0.5, 0] }] : [], showPoints: false, }; }), // Vertical asymptotes ...Array.from({ length: 3 }, (_, i) => { const x = (i - 1) * Math.PI + Math.PI / 2; return { points: [ { x, y: -5, z: 0 }, { x, y: 5, z: 0 }, ], color: getColor("ROSE"), showPoints: false, labels: i === 1 ? [{ text: `x = π/2`, at: 1, offset: [1, 0.5, 0] }] : [], }; }), ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> **Characteristics of** **graph**: - **Period**: (shorter than sin and cos) - **Amplitude**: Undefined - **Domain**: - **Range**: All real numbers - **Vertical asymptotes**: - **x-intercepts**: ## Transformations of Trigonometric Functions ### Amplitude Changes The function changes the amplitude to . { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.sin(x), z: 0 }; }), color: getColor("SKY"), labels: [{ text: "y = sin x", at: 25, offset: [1.5, -2.5, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: 2 * Math.sin(x), z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "y = 2 sin x", at: 25, offset: [1.25, 1.5, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: 0.5 * Math.sin(x), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "y = 0.5 sin x", at: 25, offset: [1, 2.5, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> ### Period Changes The function changes the period to . { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.sin(x), z: 0 }; }), color: getColor("SKY"), labels: [{ text: "y = sin x", at: 25, offset: [1.5, -2.5, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.sin(2 * x), z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "y = sin 2x", at: 60, offset: [1.25, 1.5, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.sin(0.5 * x), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "y = sin 0.5x", at: 25, offset: [1, 2.5, 0] }], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> ### Vertical and Horizontal Shifts General form: - : Amplitude - : Affects period ( ) - : Horizontal shift (phase) - : Vertical shift Notice the horizontal and vertical shifts of the graph: Graph of shows all transformations. } data={[ { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: Math.sin(x), z: 0 }; }), color: getColor("SKY"), labels: [{ text: "y = sin x (basic)", at: 25, offset: [0.5, -2, 0] }], showPoints: false, }, { points: Array.from({ length: 100 }, (_, i) => { const x = (i / 99) * 4 * Math.PI - 2 * Math.PI; return { x, y: 2 * Math.sin(x - Math.PI / 4) + 1, z: 0 }; }), color: getColor("ROSE"), labels: [ { text: "y = 2sin(x - π/4) + 1", at: 25, offset: [0.5, 1.5, 0] }, ], showPoints: false, }, ]} cameraPosition={[0, 0, 15]} showZAxis={false} /> ## Exercises 1. Convert the following angles: - 120° to radians - radians to degrees 2. Determine the period and amplitude of: - - 3. Sketch the graph of . Determine: - Amplitude - Period - Phase shift - Vertical shift 4. If tidal height is modeled by meters, where t is in hours: - What are the maximum and minimum water heights? - What is the tidal period? 5. Determine the equation of a trigonometric function that has: - Amplitude 3 - Period - Shifted to the right - Shifted 2 units up ### Answer Key 1. Angle conversion: - radians - 2. Period and amplitude: - : Amplitude = 3, Period = - : Amplitude = 2, Period = 3. For : - Amplitude: 2 - Period: - Phase shift: to the left - Vertical shift: 1 unit down 4. For : - Maximum height: 5 + 2 = 7 meters - Minimum height: 5 - 2 = 3 meters - Period: hours 5. Equation that satisfies the requirements: or