# Nakafa Framework: LLM URL: /en/subject/high-school/11/mathematics/geometric-transformation/reflection-matrix-center Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/geometric-transformation/reflection-matrix-center/en.mdx Output docs content for large language models. --- import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; export const metadata = { title: "Reflection Matrix over Center Point", description: "Learn reflection matrix over origin (0,0). Master point transformation using 2x2 matrices with step-by-step calculations and visual examples.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/10/2025", subject: "Geometric Transformation", }; ## Finding the Reflection Matrix over the Origin Reflecting a point over the origin results in the image . This is equivalent to a rotation about the origin. Now, we will find the matrix, let's say , that represents this transformation. We want to find such that: From matrix multiplication, we can write: By equating the corresponding coefficients, we get: - For the first row: . This means and . - For the second row: . This means and . ### Reflection Matrix over the Origin The matrix associated with reflection over the origin is: ## Application of Reflection Matrix over the Origin ## Finding the Image of Points Determine the images of points and when reflected over the origin! **Alternative Solution:** Using the transformation matrix : For point : The image of point A is . For point : The image of point B is . Reflection of Points and {" "} over the Origin } description={ <> Visualization of reflecting point to{" "} and to{" "} over the origin{" "} . } data={[ { points: [{ x: 0, y: 0, z: 0 }], color: getColor("ROSE"), showPoints: true, labels: [{ text: "O", at: 0, offset: [0.3, -0.3, 0] }], }, // Origin // Point A and A' { points: [{ x: -1, y: 1, z: 0 }], color: getColor("CYAN"), showPoints: true, labels: [{ text: "A(-1,1)", at: 0, offset: [-0.7, 0.3, 0] }], }, { points: [{ x: 1, y: -1, z: 0 }], color: getColor("CYAN"), showPoints: true, labels: [{ text: "A'(1,-1)", at: 0, offset: [0.3, -0.5, 0] }], }, { points: [ { x: -1, y: 1, z: 0 }, { x: 1, y: -1, z: 0 }, ], color: getColor("INDIGO"), }, // Line AA' // Point B and B' { points: [{ x: 3, y: -2, z: 0 }], color: getColor("PURPLE"), showPoints: true, labels: [{ text: "B(3,-2)", at: 0, offset: [0.3, -0.3, 0] }], }, { points: [{ x: -3, y: 2, z: 0 }], color: getColor("PURPLE"), showPoints: true, labels: [{ text: "B'(-3,2)", at: 0, offset: [-0.7, 0.3, 0] }], }, { points: [ { x: 3, y: -2, z: 0 }, { x: -3, y: 2, z: 0 }, ], color: getColor("INDIGO"), }, // Line BB' ]} showZAxis={false} cameraPosition={[0, 0, 10]} /> ## Exercises 1. Determine the images of points and when reflected over the origin! 2. A triangle has vertices , , and . Determine the coordinates of the image triangle after reflection over the origin using matrix multiplication. ### Key Answers 1. The reflection matrix over the origin is: . For : Image . For : Image . 2. Matrix of PQR vertices: . Image: , , .