# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/11/mathematics/polynomial/polynomial-graph Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/11/mathematics/polynomial/polynomial-graph/en.mdx Output docs content for large language models. --- import { LineEquation } from "@repo/design-system/components/contents/line-equation"; import { getColor } from "@repo/design-system/lib/color"; export const metadata = { title: "Polynomial Graph", description: "Master polynomial graphing with point plotting, end behavior analysis, and visual patterns. Learn to sketch linear, quadratic, and cubic graphs step-by-step.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/04/2025", subject: "Polynomial", }; ## Graphing Polynomial Functions The graph of a polynomial function provides a visual representation of how the function's value changes as the input value changes. The shape of this graph can vary greatly depending on the degree and coefficients of the function. ## Point Plotting Method The most fundamental way to draw a graph is by determining several point pairs that satisfy the function, then connecting them with a smooth curve. **Steps:** 1. Choose several different values for . 2. Calculate the value for each chosen value. 3. Create a table of value pairs. 4. Plot these points on the coordinate plane. 5. Connect the points with a smooth and continuous curve. ### Linear Function (Degree 1) Graph the function . We choose several values and calculate : | | | | | :---------------------- | :----------------------------- | :----------------------------- | | -3 | -1 | | | -2 | 1 | | | -1 | 3 | | | 0 | 5 | | | 1 | 7 | | | 2 | 9 | | | 3 | 11 | | Plot the points and connect them: Graph of } description="Graph of a linear function (degree 1)." showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 7 }, (_, i) => { const x = -3 + i; return { x, y: 2 * x + 5, z: 0 }; }), color: getColor("YELLOW"), }, ]} /> ### Quadratic Function (Degree 2) Graph the function . Table of values: | | | | | :---------------------- | :----------------------------- | :---------------------------- | | -2 | 5 | | | -1 | 0 | | | 0 | -3 | | | 1 | -4 | | | 2 | -3 | | | 3 | 0 | | | 4 | 5 | | Plot the points and connect with a smooth curve (parabola): Graph of } description="Graph of a quadratic function (degree 2)." showZAxis={false} cameraPosition={[0, 0, 10]} data={[ { points: Array.from({ length: 7 }, (_, i) => { const x = -2 + i; return { x, y: x * x - 2 * x - 3, z: 0 }; }), color: getColor("CYAN"), }, ]} /> ### Cubic Function (Degree 3) Graph the function . Table of values: | | | | | :---------------------- | :----------------------------- | :------------------------------ | | -4 | -20 | | | -3 | -4 | | | -2 | 0 | | | -1 | -2 | | | 0 | -4 | | | 1 | 0 | | | 2 | 16 | | Plot the points and connect with a smooth curve: Graph of } description="Graph of a cubic function (degree 3)." showZAxis={false} cameraPosition={[0, 0, 12]} data={[ { points: Array.from({ length: 61 }, (_, i) => { // Increased points for smoothness const x = -4 + i * 0.1; return { x, y: x * x * x + 3 * x * x - 4, z: 0 }; }), color: getColor("VIOLET"), showPoints: false, }, ]} /> ## General Characteristics of Polynomial Graphs Graphs of polynomial functions are always **smooth** (no sharp corners) and **continuous** (no jumps or breaks). Their general shape is heavily influenced by the **degree** of the polynomial. - **Degree 0:** . The graph is a horizontal line. - **Degree 1:** . The graph is a straight (slanted) line. - **Degree 2:** . The graph is a parabola. - **Degree 3:** . The graph has a shape like the letter 'S' or a reverse 'S', and can have up to two 'peaks' or 'valleys'. - **Degree 4:** The graph can have up to three 'peaks' or 'valleys'. - **Degree 5:** The graph can have up to four 'peaks' or 'valleys'. In general, the graph of a polynomial function of degree can intersect the -axis **at most** times and has **at most** turning points (peaks or valleys). ## End Behavior One important characteristic of polynomial graphs is their **end behavior**, which describes the direction of the graph as approaches positive infinity () or negative infinity (). The end behavior is determined **solely** by the **leading term** : 1. **Degree (Even or Odd)** 2. **Sign of the Leading Coefficient (Positive or Negative)** There are four possible combinations: 1. ** Even, (Positive):** - As , (rises right ) - As , (rises left ) - Examples: , Graph of (Even, Positive) } description="Graph rises to the left and right." showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 7 }, (_, i) => { const x = -3 + i; return { x, y: x * x, z: 0 }; }), color: getColor("LIME"), }, ]} /> 2. ** Even, (Negative):** - As , (falls right ) - As , (falls left ) - Examples: , Graph of (Even, Negative) } description="Graph falls to the left and right." showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 7 }, (_, i) => { const x = -3 + i; return { x, y: -(x * x), z: 0 }; }), color: getColor("ROSE"), }, ]} /> 3. ** Odd, (Positive):** - As , (rises right ) - As , (falls left ) - Examples: , , Graph of (Odd, Positive) } description="Graph falls to the left and rises to the right." showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = -3 + i * 0.15; return { x, y: x * x * x, z: 0 }; }), color: getColor("SKY"), showPoints: false, }, ]} /> 4. ** Odd, (Negative):** - As , (falls right ) - As , (rises left ) - Examples: , Graph of (Odd, Negative) } description="Graph rises to the left and falls to the right." showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = -3 + i * 0.15; return { x, y: -(x * x * x), z: 0 }; }), color: getColor("AMBER"), showPoints: false, }, ]} /> ### Using End Behavior Knowing the end behavior is very helpful for identifying the graph of a polynomial function without having to plot it in detail. **Application Example:** Match the following functions with their likely end behavior: 1. - Leading term: - Degree (Even) - Leading coefficient (Positive) - End behavior: Rises left (), Rises right ()
Graph of } description={ <> End Behavior: {" "} } showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 51 }, (_, i) => { const x = -2.5 + i * (4.3 / 50); const y = x ** 4 + 2 * x ** 3 - 2 * x - 3; return { x, y, z: 0 }; }), color: getColor("TEAL"), showPoints: false, }, ]} />
2. - Leading term: - Degree (Odd) - Leading coefficient (Negative) - End behavior: Rises left (), Falls right ()
Graph of } description={ <> End Behavior: {" "} } showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 51 }, (_, i) => { const x = -2.5 + i * 0.1; const y = -(x ** 3) + 2 * x ** 2 - x + 1; return { x, y, z: 0 }; }), color: getColor("ORANGE"), showPoints: false, }, ]} />
3. - Leading term: - Degree (Even) - Leading coefficient (Negative) - End behavior: Falls left (), Falls right ()
Graph of{" "} } description={ <> End Behavior: {" "} } showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 111 }, (_, i) => { const x = -2.5 + i * (4.1 / 110); const y = -(x ** 6) - (11 / 4) * x ** 5 + x ** 4 + 5 * x ** 3 + 2; return { x, y, z: 0 }; }), color: getColor("FUCHSIA"), showPoints: false, }, ]} />
4. - Leading term: - Degree (Odd) - Leading coefficient (Positive) - End behavior: Falls left (), Rises right ()
Graph of{" "} } description={ <> End Behavior: {" "} } showZAxis={false} cameraPosition={[0, 0, 15]} data={[ { points: Array.from({ length: 71 }, (_, i) => { const x = -1.2 + i * 0.035; const y = 25 * x ** 5 - 20 * x ** 4 - 26 * x ** 3 + 12 * x ** 2 + 9 * x - 1; return { x, y, z: 0 }; }), color: getColor("INDIGO"), showPoints: false, }, ]} />
By analyzing the leading term, we can predict the general shape of the graph at its ends.