# Nakafa Framework: LLM URL: /en/subject/high-school/12/mathematics/analytic-geometry/definition-of-circle Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/analytic-geometry/definition-of-circle/en.mdx Output docs content for large language models. --- export const metadata = { title: "Definition of Circle", description: "Master circle fundamentals with clear explanations of center, radius, and equations. Learn how to derive (x-a)² + (y-b)² = r² with interactive examples.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/26/2025", subject: "Analytic Geometry", }; import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; ## Understanding Circle A circle is the collection of all points on a plane that have the same distance from one fixed point. This fixed point is called the **center of the circle**, while the equal distance from the center to every point on the circle is called the **radius**. Imagine you tie a string to a nail, then pull the string tight and draw a complete curve around the nail. The curve that forms is what we call a circle, the nail is its center, and the length of the string is its radius. { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: Array.from({ length: 2 }, (_, i) => { const center = { x: 0, y: 0 }; const radius = 3; const angle = 0; // horizontal radius return { x: center.x + i * radius * Math.cos(angle), y: center.y + i * radius * Math.sin(angle), z: 0, }; }), color: getColor("ORANGE"), showPoints: true, labels: [ { text: "P", at: 0, offset: [-0.3, -0.3, 0] }, { text: "r", at: 1, offset: [-1, -0.5, 0] }, ], }, { points: Array.from({ length: 2 }, (_, i) => { const center = { x: 0, y: 0 }; const radius = 3; const angle = Math.PI / 4; // 45 degree radius return { x: center.x + i * radius * Math.cos(angle), y: center.y + i * radius * Math.sin(angle), z: 0, }; }), color: getColor("ORANGE"), showPoints: false, labels: [{ text: "r", at: 1, offset: [-1, -0.5, 0] }], }, { points: Array.from({ length: 2 }, (_, i) => { const center = { x: 0, y: 0 }; const radius = 3; const angle = Math.PI; // 180 degree radius (left) return { x: center.x + i * radius * Math.cos(angle), y: center.y + i * radius * Math.sin(angle), z: 0, }; }), color: getColor("ORANGE"), showPoints: false, labels: [{ text: "r", at: 1, offset: [1, -0.5, 0] }], }, { points: Array.from({ length: 1 }, () => { const center = { x: 0, y: 0 }; const radius = 3; const angle = 0; // point A at 0 degrees return { x: center.x + radius * Math.cos(angle), y: center.y + radius * Math.sin(angle), z: 0, }; }), color: getColor("CYAN"), showPoints: true, labels: [{ text: "A", at: 0, offset: [0.5, 0, 0] }], }, { points: Array.from({ length: 1 }, () => { const center = { x: 0, y: 0 }; const radius = 3; const angle = Math.PI / 4; // point B at 45 degrees return { x: center.x + radius * Math.cos(angle), y: center.y + radius * Math.sin(angle), z: 0, }; }), color: getColor("CYAN"), showPoints: true, labels: [{ text: "B", at: 0, offset: [0.3, 0.3, 0] }], }, { points: Array.from({ length: 1 }, () => { const center = { x: 0, y: 0 }; const radius = 3; const angle = Math.PI; // point C at 180 degrees return { x: center.x + radius * Math.cos(angle), y: center.y + radius * Math.sin(angle), z: 0, }; }), color: getColor("CYAN"), showPoints: true, labels: [{ text: "C", at: 0, offset: [-0.5, 0, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> In the visualization above, point P is the center of the circle, while points A, B, and C are some points that lie on the circle. Notice that the distance from P to A, P to B, and P to C are all equal to . This is what makes them all lie on the same circle. ## Mathematical Definition Now, let's create a more formal definition. Mathematically, a circle with center and radius is the set of all points that satisfy the condition: Where is the distance from the center point P to the point on the circle. If we use the distance formula in the Cartesian coordinate system, we can write it like this: ## Circle Equation From the mathematical definition above, we can derive the **circle equation** by squaring both sides:
This is the **general equation of a circle** with center and radius . This formula is very useful for determining whether a point lies inside, outside, or exactly on the circle. { const angle = (i * Math.PI) / 180; return { x: 2 + 2 * Math.cos(angle), y: 1 + 2 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: Array.from({ length: 2 }, (_, i) => { const center = { x: 2, y: 1 }; const radius = 2; const angle = 0; // horizontal radius to the right return { x: center.x + i * radius * Math.cos(angle), y: center.y + i * radius * Math.sin(angle), z: 0, }; }), color: getColor("ORANGE"), showPoints: true, labels: [ { text: "(2, 1)", at: 0, offset: [-0.5, -0.5, 0] }, { text: "r = 2", at: 1, offset: [0, -0.5, 0] }, ], }, { points: Array.from({ length: 2 }, (_, i) => { const xMin = -1; const xMax = 5; const y = 0; // x-axis return { x: xMin + i * (xMax - xMin), y: y, z: 0, }; }), color: getColor("AMBER"), showPoints: false, smooth: false, }, { points: Array.from({ length: 2 }, (_, i) => { const yMin = -2; const yMax = 4; const x = 0; // y-axis return { x: x, y: yMin + i * (yMax - yMin), z: 0, }; }), color: getColor("AMBER"), showPoints: false, smooth: false, }, { points: Array.from({ length: 1 }, () => { // Origin point at (0, 0) return { x: 0, y: 0, z: 0, }; }), color: getColor("TEAL"), showPoints: true, labels: [{ text: "O", at: 0, offset: [-0.5, -0.5, 0] }], }, ]} cameraPosition={[0, 0, 10]} showZAxis={false} /> For the circle in the visualization above, its equation is: ### Special Form of Circle Equation There's one special case that's interesting. When the center of the circle is at the origin , the circle equation becomes simpler: This form is very practical because it's easier to calculate and understand. ## Important Circle Elements There are several important terms you need to understand: 1. **Center of circle** is the fixed point that serves as a reference for all points on the circle. All points on the circle have the same distance to this center. 2. **Radius** is the distance from the center of the circle to any point on the circle. In one circle, all radii have the same length. 3. **Diameter** is a straight line that connects two points on the circle and passes through the center. The length of the diameter is always twice the length of the radius, or . To make it easier to understand, we can see the visualization below: { const angle = (i * Math.PI) / 180; return { x: 3 * Math.cos(angle), y: 3 * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: Array.from({ length: 2 }, (_, i) => { const center = { x: 0, y: 0 }; const radius = 3; const angle = 0; // horizontal radius showing radius return { x: center.x + i * radius * Math.cos(angle), y: center.y + i * radius * Math.sin(angle), z: 0, }; }), color: getColor("ORANGE"), showPoints: true, labels: [ { text: "O", at: 0, offset: [0, -0.5, 0] }, { text: "radius", at: 1, offset: [-1, -0.5, 0] }, ], }, { points: Array.from({ length: 2 }, (_, i) => { const center = { x: 0, y: 0 }; const radius = 3; const angle = 0; // horizontal diameter // i=0: left point, i=1: right point const direction = i === 0 ? -1 : 1; return { x: center.x + direction * radius * Math.cos(angle), y: center.y + direction * radius * Math.sin(angle), z: 0, }; }), color: getColor("CYAN"), showPoints: true, labels: [ { text: "A", at: 0, offset: [-0.5, 0, 0] }, { text: "B", at: 1, offset: [0.5, 0, 0] }, { text: "diameter", at: 1, offset: [-3, 1, 0] }, ], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> ## Application Example Now let's apply the circle definition to determine the circle equation. **Example**: Determine the equation of a circle centered at with radius 5. **Solution**: We just need to use the general formula for circle equation with center and radius :
So the circle equation is .