# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/12/mathematics/analytic-geometry/ellipse Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/analytic-geometry/ellipse/en.mdx Output docs content for large language models. --- export const metadata = { title: "Ellipse", description: "Discover ellipse properties, foci, and equations. Learn to solve x²/a² + y²/b² = 1 problems with step-by-step examples and interactive visualizations.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/26/2025", subject: "Analytic Geometry", }; import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; ## What is an Ellipse? Ever seen the shape of planets orbiting the sun? Or the shadow of a circle when viewed from the side? Well, shapes like those are called **ellipses**! An ellipse isn't just a "flattened" circle, but there's a cool mathematical definition behind it. So here's the thing, an ellipse is a collection of points where **the sum of distances to two specific points is always the same**. These two specific points are called **foci**. Just imagine you have two nails and a string. If you tie the string to both nails, then pull a pencil until the string is tight and draw a complete curve, the curve formed is an ellipse! { const angle = (i * Math.PI) / 180; const a = 4; const b = 2.5; return { x: a * Math.cos(angle), y: b * Math.sin(angle), z: 0, }; }), color: getColor("PURPLE"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 } ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O", at: 0, offset: [-0.3, -0.3, 0] }], }, { points: (() => { const a = 4, b = 2.5; const c = Math.sqrt(a*a - b*b); return [ { x: -c, y: 0, z: 0 }, { x: c, y: 0, z: 0 } ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "F₁", at: 0, offset: [-0.5, -0.5, 0] }, { text: "F₂", at: 1, offset: [0.5, -0.5, 0] } ], }, { points: (() => { const angle = Math.PI / 3; const a = 4, b = 2.5; return [{ x: a * Math.cos(angle), y: b * Math.sin(angle), z: 0, }]; })(), color: getColor("LIME"), showPoints: true, labels: [{ text: "P", at: 0, offset: [0.5, 0.3, 0] }], }, { points: (() => { const angle = Math.PI / 3; const a = 4, b = 2.5; const c = Math.sqrt(a*a - b*b); const px = a * Math.cos(angle); const py = b * Math.sin(angle); return [ { x: -c, y: 0, z: 0 }, { x: px, y: py, z: 0 } ]; })(), color: getColor("AMBER"), showPoints: false, smooth: false, labels: [{ text: "r₁", at: 1, offset: [-1, 0.5, 0] }], }, { points: (() => { const angle = Math.PI / 3; const a = 4, b = 2.5; const c = Math.sqrt(a*a - b*b); const px = a * Math.cos(angle); const py = b * Math.sin(angle); return [ { x: c, y: 0, z: 0 }, { x: px, y: py, z: 0 } ]; })(), color: getColor("AMBER"), showPoints: false, smooth: false, labels: [{ text: "r₂", at: 0, offset: [0.5, 1, 0] }], }, { points: [ { x: -6, y: 0, z: 0 }, { x: 6, y: 0, z: 0 } ], color: getColor("ROSE"), showPoints: false, smooth: false, }, { points: [ { x: 0, y: -4, z: 0 }, { x: 0, y: 4, z: 0 } ], color: getColor("ROSE"), showPoints: false, smooth: false, }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> From the visualization above, notice point . The distance from to focus (which we call ) plus the distance from to focus (which we call ) will always be the same for all points on the ellipse. This is the **fundamental characteristic of an ellipse**! ## Ellipse Components Before we discuss the formulas, let's get familiar with the important parts of an ellipse. Each part has its own role in determining the shape of the ellipse. { const angle = (i * Math.PI) / 180; const a = 4; const b = 2.8; return { x: a * Math.cos(angle), y: b * Math.sin(angle), z: 0, }; }), color: getColor("INDIGO"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 } ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "Center", at: 0, offset: [-0.8, -0.5, 0] }], }, { points: (() => { const a = 4, b = 2.8; const c = Math.sqrt(a*a - b*b); return [ { x: -c, y: 0, z: 0 }, { x: c, y: 0, z: 0 } ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "F₁", at: 0, offset: [-0.5, -0.5, 0] }, { text: "F₂", at: 1, offset: [0.5, -0.5, 0] } ], }, { points: [ { x: -4, y: 0, z: 0 }, { x: 4, y: 0, z: 0 } ], color: getColor("TEAL"), showPoints: true, labels: [ { text: "A₁", at: 0, offset: [-0.5, 0.5, 0] }, { text: "A₂", at: 1, offset: [0.5, 0.5, 0] } ], }, { points: [ { x: 0, y: -2.8, z: 0 }, { x: 0, y: 2.8, z: 0 } ], color: getColor("EMERALD"), showPoints: true, labels: [ { text: "B₁", at: 0, offset: [-0.5, -0.5, 0] }, { text: "B₂", at: 1, offset: [-0.5, 0.5, 0] } ], }, { points: [ { x: -4, y: 0, z: 0 }, { x: 4, y: 0, z: 0 } ], color: getColor("YELLOW"), showPoints: false, smooth: false, labels: [{ text: "Major Axis", at: 1, offset: [-1.5, -1, 0] }], }, { points: [ { x: 0, y: -2.8, z: 0 }, { x: 0, y: 2.8, z: 0 } ], color: getColor("PINK"), showPoints: false, smooth: false, labels: [{ text: "Minor Axis", at: 1, offset: [1.5, -1, 0] }], }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> Here are the components you need to know: 1. **Ellipse center** is the midpoint of the ellipse, usually written with letter . All measurements in the ellipse refer to this point. 2. **Foci** ( and ) are two fixed points that serve as reference for the ellipse definition. The distance between the two foci is called the focal distance. 3. **Major axis** is the longest line that passes through the ellipse center and both foci. Its endpoints are points and . 4. **Minor axis** is the shortest line that passes through the ellipse center and is perpendicular to the major axis. Its endpoints are points and . 5. **Semi-major** () is half the length of the major axis, which is the distance from center to the major axis endpoint. 6. **Semi-minor** () is half the length of the minor axis, which is the distance from center to the minor axis endpoint. > Remember, in an ellipse we always have . If , the shape becomes a circle! ## Ellipse Equations Now, let's get into the fun part: how to write an ellipse in mathematical equation form. There are several forms depending on position and orientation. ### Center at Origin If the ellipse center is at , there are two possible orientations: Ellipse with .} data={[ { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; const a = 4.5; const b = 3; return { x: a * Math.cos(angle), y: b * Math.sin(angle), z: 0, }; }), color: getColor("VIOLET"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 } ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O(0,0)", at: 0, offset: [-0.8, -0.5, 0] }], }, { points: (() => { const a = 4.5, b = 3; const c = Math.sqrt(a*a - b*b); return [ { x: -c, y: 0, z: 0 }, { x: c, y: 0, z: 0 } ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "F₁", at: 0, offset: [-0.5, 0.5, 0] }, { text: "F₂", at: 1, offset: [0.5, 0.5, 0] } ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 4.5, y: 0, z: 0 } ], color: getColor("AMBER"), showPoints: false, smooth: false, labels: [{ text: "a", at: 1, offset: [0, -0.5, 0] }], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 0, y: 3, z: 0 } ], color: getColor("EMERALD"), showPoints: false, smooth: false, labels: [{ text: "b", at: 1, offset: [0.5, 0, 0] }], }, { points: [ { x: -6, y: 0, z: 0 }, { x: 6, y: 0, z: 0 } ], color: getColor("ROSE"), showPoints: false, smooth: false, }, { points: [ { x: 0, y: -4, z: 0 }, { x: 0, y: 4, z: 0 } ], color: getColor("ROSE"), showPoints: false, smooth: false, }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> When the major axis is parallel to the axis (horizontal), the ellipse equation is: with the condition . Ellipse with .} data={[ { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; const a = 4.5; const b = 3; return { x: b * Math.cos(angle), y: a * Math.sin(angle), z: 0, }; }), color: getColor("TEAL"), showPoints: false, }, { points: [ { x: 0, y: 0, z: 0 } ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "O(0,0)", at: 0, offset: [-0.8, -0.5, 0] }], }, { points: (() => { const a = 4.5, b = 3; const c = Math.sqrt(a*a - b*b); return [ { x: 0, y: -c, z: 0 }, { x: 0, y: c, z: 0 } ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "F₁", at: 0, offset: [0.5, -0.5, 0] }, { text: "F₂", at: 1, offset: [0.5, 0.5, 0] } ], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 3, y: 0, z: 0 } ], color: getColor("EMERALD"), showPoints: false, smooth: false, labels: [{ text: "b", at: 1, offset: [0, -0.5, 0] }], }, { points: [ { x: 0, y: 0, z: 0 }, { x: 0, y: 4.5, z: 0 } ], color: getColor("AMBER"), showPoints: false, smooth: false, labels: [{ text: "a", at: 1, offset: [0.5, 0, 0] }], }, { points: [ { x: -5, y: 0, z: 0 }, { x: 5, y: 0, z: 0 } ], color: getColor("ROSE"), showPoints: false, smooth: false, }, { points: [ { x: 0, y: -6, z: 0 }, { x: 0, y: 6, z: 0 } ], color: getColor("ROSE"), showPoints: false, smooth: false, }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> When the major axis is parallel to the axis (vertical), the ellipse equation is: with the condition . ### Shifted Center If the ellipse center is not at the origin, but at point , the equation becomes:
Visualization: Ellipse with center at and horizontal major axis.} data={[ { points: Array.from({ length: 361 }, (_, i) => { const angle = (i * Math.PI) / 180; const a = 3.5; const b = 2.5; const h = 2, k = -1; return { x: h + a * Math.cos(angle), y: k + b * Math.sin(angle), z: 0, }; }), color: getColor("SKY"), showPoints: false, }, { points: [ { x: 2, y: -1, z: 0 } ], color: getColor("ORANGE"), showPoints: true, labels: [{ text: "(2,-1)", at: 0, offset: [-0.8, 0.5, 0] }], }, { points: (() => { const a = 3.5, b = 2.5; const c = Math.sqrt(a*a - b*b); const h = 2, k = -1; return [ { x: h - c, y: k, z: 0 }, { x: h + c, y: k, z: 0 } ]; })(), color: getColor("CYAN"), showPoints: true, labels: [ { text: "F₁", at: 0, offset: [-0.5, 0.5, 0] }, { text: "F₂", at: 1, offset: [0.5, 0.5, 0] } ], }, { points: [ { x: 2, y: -1, z: 0 }, { x: 5.5, y: -1, z: 0 } ], color: getColor("AMBER"), showPoints: false, smooth: false, labels: [{ text: "a", at: 1, offset: [0, -0.5, 0] }], }, { points: [ { x: 2, y: -1, z: 0 }, { x: 2, y: 1.5, z: 0 } ], color: getColor("EMERALD"), showPoints: false, smooth: false, labels: [{ text: "b", at: 1, offset: [0.5, 0, 0] }], }, { points: [ { x: -3, y: 0, z: 0 }, { x: 7, y: 0, z: 0 } ], color: getColor("ROSE"), showPoints: false, smooth: false, }, { points: [ { x: 0, y: -5, z: 0 }, { x: 0, y: 3, z: 0 } ], color: getColor("ROSE"), showPoints: false, smooth: false, }, ]} cameraPosition={[0, 0, 12]} showZAxis={false} /> ## Important Relationships There's a formula that always applies to every ellipse: where is the distance from center to focus. **Eccentricity** of an ellipse is defined as: The eccentricity value of an ellipse is always . The closer to , the more circular the ellipse becomes. The closer to , the more elongated the ellipse becomes. ## Exercises 1. Find the equation of an ellipse with center at , major axis length and minor axis length , with horizontal major axis. 2. Given ellipse . Find the coordinates of the foci and the eccentricity of the ellipse. 3. An ellipse has center at , foci at and , and minor axis length . Find the equation of the ellipse. 4. Find the equation of an ellipse that passes through points and with center at and horizontal major axis. ### Answer Key 1. **Solution**: Given: - Center at - Major axis length = , so , thus - Minor axis length = , so , thus - Horizontal major axis Ellipse equation with horizontal major axis: Substituting values and : 2. **Solution**: From equation : - , so - , so Since , the major axis is horizontal. Calculate :
Foci coordinates: which are and Eccentricity: 3. **Solution**: Given: - Center: - Foci: and - Minor axis length = , so , thus Since the foci have the same coordinate (), the major axis is vertical. so , thus Calculate :
Ellipse equation with center and vertical major axis: 4. **Solution**: An ellipse with center and horizontal major axis has the equation: Substituting point : Substituting point : Let and , then:
From equation (1): Substituting into equation (2):
So Substituting back:
So Ellipse equation: