# Nakafa Framework: LLM
URL: /en/subject/high-school/12/mathematics/function-transformation/horizontal-reflection
Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/function-transformation/horizontal-reflection/en.mdx
Output docs content for large language models.
---
export const metadata = {
  title: "Horizontal Reflection",
  description: "Master horizontal reflection in functions with clear examples. Learn how to reflect graphs across the y-axis and apply this transformation effectively.",
  authors: [{ name: "Nabil Akbarazzima Fatih" }],
  date: "05/26/2025",
  subject: "Function Transformation",
};
import { getColor } from "@repo/design-system/lib/color";
import { LineEquation } from "@repo/design-system/components/contents/line-equation";
## Basic Concepts of Horizontal Reflection
Horizontal reflection is a geometric transformation that reflects the graph of a function across the y-axis, like seeing the reflection of an object in a vertical mirror. Imagine standing in front of a mirror, your right hand will appear as your left hand in the mirror, similarly with function graphs that are reflected horizontally.
If we have a function , then horizontal reflection produces a new function  which is the reflection of the original function across the y-axis.
### Rules of Horizontal Reflection
For any function , horizontal reflection is defined as:
This transformation changes every point  on the original graph to  on the reflected graph.
## Visualization of Horizontal Reflection
Let's see how horizontal reflection works on the quadratic function .
Horizontal Reflection of Quadratic Function >}
  description="Notice how the graph reflects across the y-axis, forming a symmetric reflection."
  showZAxis={false}
  cameraPosition={[12, 8, 12]}
  data={[
    {
      points: Array.from({ length: 41 }, (_, i) => {
        const x = (i - 20) * 0.25;
        return { x, y: (x - 2) * (x - 2), z: 0 };
      }),
      color: getColor("PURPLE"),
      labels: [{ text: "f(x) = (x - 2)²", offset: [1, 1, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 41 }, (_, i) => {
        const x = (i - 20) * 0.25;
        return { x, y: ((-x) - 2) * ((-x) - 2), z: 0 };
      }),
      color: getColor("ORANGE"),
      labels: [{ text: "g(x) = (-x - 2)²", offset: [-1, -1, 0] }],
      showPoints: false,
    },
  ]}
/>
From the visualization above, we can observe:
- The original function  has its vertex at 
- The reflected function  has its vertex at 
- Both graphs are symmetric across the y-axis
## Horizontal Reflection on Linear Functions
Now let's apply the same concept to the linear function .
Horizontal Reflection of Linear Function >}
  description="The reflected line has opposite slope but the same y-intercept."
  showZAxis={false}
  cameraPosition={[10, 6, 10]}
  data={[
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = (i - 10) * 0.5;
        return { x, y: 2 * x + 3, z: 0 };
      }),
      color: getColor("VIOLET"),
      labels: [{ text: "f(x) = 2x + 3", offset: [2.5, 0.5, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = (i - 10) * 0.5;
        return { x, y: 2 * (-x) + 3, z: 0 };
      }),
      color: getColor("AMBER"),
      labels: [{ text: "g(x) = -2x + 3", offset: [-2.5, -0.5, 0] }],
      showPoints: false,
    },
  ]}
/>
Notice that:
- The original function  has a positive slope of 2
- The reflected function  has a negative slope of 2
- Both lines intersect the y-axis at the same point 
## Important Properties of Horizontal Reflection
### Y-axis as Axis of Symmetry
Horizontal reflection uses the y-axis as the mirror line. Every point on the original graph has the same distance to the y-axis as the corresponding point on the reflected graph.
### Effect on Coordinate Points
If point  is on the graph of , then the corresponding point on the graph of  is .
### Domain and Range
- **Domain**: Changes to the opposite of the original domain
- **Range**: Does not change after horizontal reflection
If the domain of the original function is , then the domain after horizontal reflection becomes .
## Application Examples
### Exponential Function Example
Let's look at horizontal reflection on the exponential function .
Horizontal Reflection of Exponential Function >}
  description="The reflected exponential curve produces a decreasing curve with different characteristics."
  showZAxis={false}
  cameraPosition={[8, 6, 8]}
  data={[
    {
      points: Array.from({ length: 31 }, (_, i) => {
        const x = (i - 15) * 0.3;
        return { x, y: Math.pow(2, x), z: 0 };
      }),
      color: getColor("INDIGO"),
      labels: [{ text: "f(x) = 2^x", offset: [3, 1, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 31 }, (_, i) => {
        const x = (i - 15) * 0.3;
        return { x, y: Math.pow(2, -x), z: 0 };
      }),
      color: getColor("EMERALD"),
      labels: [{ text: "g(x) = 2^(-x)", offset: [-3, 1, 0] }],
      showPoints: false,
    },
  ]}
/>
For exponential functions:
- The horizontal asymptote remains at  for both functions
- The y-intercept remains the same at 
- The function that was originally increasing becomes decreasing after reflection
## Horizontal Reflection on Square Root Functions
Let's see how horizontal reflection affects the square root function.
Horizontal Reflection of Square Root Function >}
  description="The reflected square root curve produces a curve that opens in the opposite direction."
  showZAxis={false}
  cameraPosition={[10, 6, 10]}
  data={[
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = i * 0.25;
        return { x, y: Math.sqrt(x), z: 0 };
      }),
      color: getColor("CYAN"),
      labels: [{ text: "f(x) = √x", offset: [1, 1.5, 0] }],
      showPoints: false,
    },
    {
      points: Array.from({ length: 21 }, (_, i) => {
        const x = -i * 0.25;
        if (x <= 0) {
          return { x, y: Math.sqrt(-x), z: 0 };
        }
        return null;
      }).filter(Boolean),
      color: getColor("ROSE"),
      labels: [{ text: "g(x) = √(-x)", offset: [-1, 1.5, 0] }],
      showPoints: false,
    },
  ]}
/>
Notice that:
- The domain of the original function  is 
- The domain of the reflected function  is 
- Both curves meet at the origin 
## Exercises
1. Given the function . Determine the equation of the function resulting from horizontal reflection.
2. If the graph of function  is reflected across the y-axis, determine:
   - The equation of the resulting reflected function
   - The domain of the function after reflection
3. Function  undergoes horizontal reflection. Determine the vertex of the resulting reflected function.
### Answer Key
1. Horizontal reflection: 
   Function  and Its Reflection Result>}
     description="The original parabola is reflected across the y-axis producing a parabola with different orientation."
     showZAxis={false}
     cameraPosition={[12, 8, 12]}
     data={[
       {
         points: Array.from({ length: 41 }, (_, i) => {
           const x = (i - 20) * 0.25;
           return { x, y: x * x + 3 * x + 2, z: 0 };
         }),
         color: getColor("PURPLE"),
         labels: [{ text: "f(x) = x² + 3x + 2", offset: [1, 1, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 41 }, (_, i) => {
           const x = (i - 20) * 0.25;
           return { x, y: x * x - 3 * x + 2, z: 0 };
         }),
         color: getColor("ORANGE"),
         labels: [{ text: "f'(x) = x² - 3x + 2", offset: [1, -1, 0] }],
         showPoints: false,
       },
     ]}
   />
2. Equation of the resulting reflected function:
    
   - Horizontal reflection: 
   - Domain after reflection: Remains  because exponential functions are defined for all real numbers
   Visualization:
   Function  and Its Reflection Result>}
     description="The increasing exponential curve is reflected to become a decreasing curve with the same asymptote."
     showZAxis={false}
     cameraPosition={[8, 6, 8]}
     data={[
       {
         points: Array.from({ length: 31 }, (_, i) => {
           const x = (i - 15) * 0.2;
           return { x, y: Math.pow(3, x) + 1, z: 0 };
         }),
         color: getColor("VIOLET"),
         labels: [{ text: "g(x) = 3^x + 1", offset: [3, 1, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 31 }, (_, i) => {
           const x = (i - 15) * 0.2;
           return { x, y: Math.pow(3, -x) + 1, z: 0 };
         }),
         color: getColor("TEAL"),
         labels: [{ text: "g'(x) = 3^(-x) + 1", offset: [-3, 1, 0] }],
         showPoints: false,
       },
     ]}
   />
3. The original function  has its vertex at .
   After horizontal reflection: , the vertex becomes .
   Function  and Its Reflection Result>}
     description="The absolute value function is reflected across the y-axis producing a function with opposite vertex position."
     showZAxis={false}
     cameraPosition={[10, 6, 10]}
     data={[
       {
         points: Array.from({ length: 41 }, (_, i) => {
           const x = (i - 20) * 0.25;
           return { x, y: Math.abs(x + 2), z: 0 };
         }),
         color: getColor("INDIGO"),
         labels: [{ text: "h(x) = |x + 2|", offset: [-1, 1, 0] }],
         showPoints: false,
       },
       {
         points: Array.from({ length: 41 }, (_, i) => {
           const x = (i - 20) * 0.25;
           return { x, y: Math.abs(-x + 2), z: 0 };
         }),
         color: getColor("EMERALD"),
         labels: [{ text: "h'(x) = |-x + 2|", offset: [1, -1, 0] }],
         showPoints: false,
       },
     ]}
   />