# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/12/mathematics/function-transformation/horizontal-reflection Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/function-transformation/horizontal-reflection/en.mdx Output docs content for large language models. --- export const metadata = { title: "Horizontal Reflection", description: "Master horizontal reflection in functions with clear examples. Learn how to reflect graphs across the y-axis and apply this transformation effectively.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/26/2025", subject: "Function Transformation", }; import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; ## Basic Concepts of Horizontal Reflection Horizontal reflection is a geometric transformation that reflects the graph of a function across the y-axis, like seeing the reflection of an object in a vertical mirror. Imagine standing in front of a mirror, your right hand will appear as your left hand in the mirror, similarly with function graphs that are reflected horizontally. If we have a function , then horizontal reflection produces a new function which is the reflection of the original function across the y-axis. ### Rules of Horizontal Reflection For any function , horizontal reflection is defined as: This transformation changes every point on the original graph to on the reflected graph. ## Visualization of Horizontal Reflection Let's see how horizontal reflection works on the quadratic function . Horizontal Reflection of Quadratic Function } description="Notice how the graph reflects across the y-axis, forming a symmetric reflection." showZAxis={false} cameraPosition={[12, 8, 12]} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: (x - 2) * (x - 2), z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "f(x) = (x - 2)²", offset: [1, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: ((-x) - 2) * ((-x) - 2), z: 0 }; }), color: getColor("ORANGE"), labels: [{ text: "g(x) = (-x - 2)²", offset: [-1, -1, 0] }], showPoints: false, }, ]} /> From the visualization above, we can observe: - The original function has its vertex at - The reflected function has its vertex at - Both graphs are symmetric across the y-axis ## Horizontal Reflection on Linear Functions Now let's apply the same concept to the linear function . Horizontal Reflection of Linear Function } description="The reflected line has opposite slope but the same y-intercept." showZAxis={false} cameraPosition={[10, 6, 10]} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * x + 3, z: 0 }; }), color: getColor("VIOLET"), labels: [{ text: "f(x) = 2x + 3", offset: [2.5, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * (-x) + 3, z: 0 }; }), color: getColor("AMBER"), labels: [{ text: "g(x) = -2x + 3", offset: [-2.5, -0.5, 0] }], showPoints: false, }, ]} /> Notice that: - The original function has a positive slope of 2 - The reflected function has a negative slope of 2 - Both lines intersect the y-axis at the same point ## Important Properties of Horizontal Reflection ### Y-axis as Axis of Symmetry Horizontal reflection uses the y-axis as the mirror line. Every point on the original graph has the same distance to the y-axis as the corresponding point on the reflected graph. ### Effect on Coordinate Points If point is on the graph of , then the corresponding point on the graph of is . ### Domain and Range - **Domain**: Changes to the opposite of the original domain - **Range**: Does not change after horizontal reflection If the domain of the original function is , then the domain after horizontal reflection becomes . ## Application Examples ### Exponential Function Example Let's look at horizontal reflection on the exponential function . Horizontal Reflection of Exponential Function } description="The reflected exponential curve produces a decreasing curve with different characteristics." showZAxis={false} cameraPosition={[8, 6, 8]} data={[ { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.3; return { x, y: Math.pow(2, x), z: 0 }; }), color: getColor("INDIGO"), labels: [{ text: "f(x) = 2^x", offset: [3, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.3; return { x, y: Math.pow(2, -x), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "g(x) = 2^(-x)", offset: [-3, 1, 0] }], showPoints: false, }, ]} /> For exponential functions: - The horizontal asymptote remains at for both functions - The y-intercept remains the same at - The function that was originally increasing becomes decreasing after reflection ## Horizontal Reflection on Square Root Functions Let's see how horizontal reflection affects the square root function. Horizontal Reflection of Square Root Function } description="The reflected square root curve produces a curve that opens in the opposite direction." showZAxis={false} cameraPosition={[10, 6, 10]} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = i * 0.25; return { x, y: Math.sqrt(x), z: 0 }; }), color: getColor("CYAN"), labels: [{ text: "f(x) = √x", offset: [1, 1.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = -i * 0.25; if (x <= 0) { return { x, y: Math.sqrt(-x), z: 0 }; } return null; }).filter(Boolean), color: getColor("ROSE"), labels: [{ text: "g(x) = √(-x)", offset: [-1, 1.5, 0] }], showPoints: false, }, ]} /> Notice that: - The domain of the original function is - The domain of the reflected function is - Both curves meet at the origin ## Exercises 1. Given the function . Determine the equation of the function resulting from horizontal reflection. 2. If the graph of function is reflected across the y-axis, determine: - The equation of the resulting reflected function - The domain of the function after reflection 3. Function undergoes horizontal reflection. Determine the vertex of the resulting reflected function. ### Answer Key 1. Horizontal reflection: Function and Its Reflection Result} description="The original parabola is reflected across the y-axis producing a parabola with different orientation." showZAxis={false} cameraPosition={[12, 8, 12]} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x + 3 * x + 2, z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "f(x) = x² + 3x + 2", offset: [1, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x - 3 * x + 2, z: 0 }; }), color: getColor("ORANGE"), labels: [{ text: "f'(x) = x² - 3x + 2", offset: [1, -1, 0] }], showPoints: false, }, ]} /> 2. Equation of the resulting reflected function: - Horizontal reflection: - Domain after reflection: Remains because exponential functions are defined for all real numbers Visualization: Function and Its Reflection Result} description="The increasing exponential curve is reflected to become a decreasing curve with the same asymptote." showZAxis={false} cameraPosition={[8, 6, 8]} data={[ { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: Math.pow(3, x) + 1, z: 0 }; }), color: getColor("VIOLET"), labels: [{ text: "g(x) = 3^x + 1", offset: [3, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: Math.pow(3, -x) + 1, z: 0 }; }), color: getColor("TEAL"), labels: [{ text: "g'(x) = 3^(-x) + 1", offset: [-3, 1, 0] }], showPoints: false, }, ]} /> 3. The original function has its vertex at . After horizontal reflection: , the vertex becomes . Function and Its Reflection Result} description="The absolute value function is reflected across the y-axis producing a function with opposite vertex position." showZAxis={false} cameraPosition={[10, 6, 10]} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: Math.abs(x + 2), z: 0 }; }), color: getColor("INDIGO"), labels: [{ text: "h(x) = |x + 2|", offset: [-1, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: Math.abs(-x + 2), z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "h'(x) = |-x + 2|", offset: [1, -1, 0] }], showPoints: false, }, ]} />