# Nakafa Framework: LLM URL: https://nakafa.com/en/subject/high-school/12/mathematics/function-transformation/vertical-translation Source: https://raw.githubusercontent.com/nakafaai/nakafa.com/refs/heads/main/packages/contents/subject/high-school/12/mathematics/function-transformation/vertical-translation/en.mdx Output docs content for large language models. --- export const metadata = { title: "Vertical Translation", description: "Unlock vertical translation secrets to move function graphs up and down effortlessly. See how adding constants shifts graphs while preserving their shape.", authors: [{ name: "Nabil Akbarazzima Fatih" }], date: "05/26/2025", subject: "Function Transformation", }; import { getColor } from "@repo/design-system/lib/color"; import { LineEquation } from "@repo/design-system/components/contents/line-equation"; ## Basic Concepts of Vertical Translation Vertical translation is a geometric transformation that shifts the graph of a function up or down along the y-axis without changing the shape of the graph. Imagine lifting or lowering an object vertically, its shape remains the same, only its position changes. If we have a function , then vertical translation produces a new function where is the translation constant. ### Rules of Vertical Translation For any function , vertical translation is defined as: Where: - If , the graph shifts **upward** by units - If , the graph shifts **downward** by units - If , there is no translation (graph remains the same) ## Visualization of Vertical Translation Let's see how vertical translation works on the linear function . Vertical Translation of Linear Function } description="Notice how the graph shifts vertically without changing the slope of the line." showZAxis={false} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * x, z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "f(x) = 2x", offset: [1, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * x + 3, z: 0 }; }), color: getColor("ORANGE"), labels: [{ text: "g(x) = 2x + 3", offset: [1, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 2 * x - 2, z: 0 }; }), color: getColor("TEAL"), labels: [{ text: "h(x) = 2x + (-2)", offset: [1, 0.5, 0] }], showPoints: false, }, ]} /> From the visualization above, we can observe: - The original function passes through the origin - Function is the result of translation upward by 3 units - Function is the result of translation downward by 2 units ## Vertical Translation on Quadratic Functions Now let's apply the same concept to the quadratic function . Vertical Translation of Quadratic Function } description="The parabola shape remains the same, only its vertical position changes." showZAxis={false} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x, z: 0 }; }), color: getColor("VIOLET"), labels: [{ text: "f(x) = x²", offset: [1, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x + 4, z: 0 }; }), color: getColor("AMBER"), labels: [{ text: "g(x) = x² + 4", offset: [1, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x - 3, z: 0 }; }), color: getColor("CYAN"), labels: [{ text: "h(x) = x² + (-3)", offset: [1, 1, 0] }], showPoints: false, }, ]} /> Notice that: - The vertex of the original parabola is at - After vertical translation +4, the vertex of is at - After vertical translation +(-3), the vertex of is at ## Important Properties of Vertical Translation ### Graph Shape Remains Unchanged Vertical translation preserves the original shape of the graph. The distance between points on the graph remains the same, only the vertical position changes. ### Effect on Coordinate Points If point is on the graph of , then after vertical translation by , that point becomes on the graph of . ### Domain and Range - **Domain**: Does not change after vertical translation - **Range**: Shifts by units If the range of the original function is , then the range after vertical translation becomes . ## Application Examples ### Exponential Function Example Let's look at vertical translation on the exponential function . Vertical Translation of Exponential Function } description="The exponential curve maintains its characteristics after vertical translation." showZAxis={false} data={[ { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: Math.pow(2, x), z: 0 }; }), color: getColor("INDIGO"), labels: [{ text: "f(x) = 2^x", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: Math.pow(2, x) + 2, z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "g(x) = 2^x + 2", offset: [0.5, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 31 }, (_, i) => { const x = (i - 15) * 0.2; return { x, y: Math.pow(2, x) - 1, z: 0 }; }), color: getColor("ROSE"), labels: [{ text: "h(x) = 2^x + (-1)", offset: [0.5, 1, 0] }], showPoints: false, }, ]} /> For exponential functions: - The horizontal asymptote on shifts to on - The y-intercept shifts from to ## Exercises 1. Given the function . Determine the equation of the function resulting from vertical translation upward by 5 units. 2. If the graph of function is translated vertically downward by 7 units, determine: - The equation of the resulting translated function - The y-intercept after translation 3. Function undergoes vertical translation such that point becomes . Determine the translation constant value and the equation of the resulting translated function. ### Answer Key 1. Vertical translation upward by 5 units: Function and Its Translation Result} description="Original quadratic function and the result of vertical translation upward by 5 units." showZAxis={false} data={[ { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x + 4 * x + 3, z: 0 }; }), color: getColor("PURPLE"), labels: [{ text: "f(x) = x² + 4x + 3", at: 10, offset: [0, 1.5, 0] }], showPoints: false, }, { points: Array.from({ length: 41 }, (_, i) => { const x = (i - 20) * 0.25; return { x, y: x * x + 4 * x + 3 + 5, z: 0 }; }), color: getColor("ORANGE"), labels: [{ text: "f'(x) = x² + 4x + 8", at: 10, offset: [0, -0.5, 0] }], showPoints: false, }, ]} /> 2. Equation of the resulting translated function: - Translation downward by 7 units: - Y-intercept: substitute into , so the intercept point is Visualization: Function and Its Translation Result} description="Original linear function and the result of vertical translation downward by 7 units." showZAxis={false} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 3 * x + 2, z: 0 }; }), color: getColor("VIOLET"), labels: [{ text: "g(x) = 3x + 2", offset: [1, 0.5, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = (i - 10) * 0.5; return { x, y: 3 * x + 2 - 7, z: 0 }; }), color: getColor("TEAL"), labels: [{ text: "g'(x) = 3x + (-5)", offset: [1, 0.5, 0] }], showPoints: false, }, ]} /> 3. Point on becomes , meaning vertical translation by units upward. Equation of the translation result: Function and Its Translation Result} description="Original square root function and the result of vertical translation upward by 3 units." showZAxis={false} data={[ { points: Array.from({ length: 21 }, (_, i) => { const x = i * 0.25; return { x, y: Math.sqrt(x), z: 0 }; }), color: getColor("INDIGO"), labels: [{ text: "h(x) = √x", offset: [1, 1, 0] }], showPoints: false, }, { points: Array.from({ length: 21 }, (_, i) => { const x = i * 0.25; return { x, y: Math.sqrt(x) + 3, z: 0 }; }), color: getColor("EMERALD"), labels: [{ text: "h'(x) = √x + 3", offset: [1, 1, 0] }], showPoints: false, }, ]} />