Given the function f(x)=(x+3)(x2+6x+8)4 and F(x)=∫f(x)dx. If F(−3)=2, then the function F(x) is ....
Explanation
Given the function f(x)=(x+3)(x2+6x+8)4 and F(x)=∫f(x)dx with the condition F(−3)=2.
U-Substitution
To solve this integral, we use the substitution method.
Let u=x2+6x+8.
The derivative of u with respect to x:
dxdu=2x+6
Factor:
dxdu=2(x+3)
Multiply both sides by dx:
du=2(x+3)dx
Divide both sides by 2:
2du=(x+3)dx
Solving the Integral
Substitute into the integral:
F(x)=∫f(x)dx=∫(x+3)(x2+6x+8)4dx
With substitution u=x2+6x+8 and (x+3)dx=2du:
F(x)=∫u4⋅2du
=21∫u4du
=21⋅5u5+C
=101u5+C
Substitute back u=x2+6x+8:
F(x)=101(x2+6x+8)5+C
Determining the Constant C
Use the condition F(−3)=2:
F(−3)=101((−3)2+6(−3)+8)5+C=2
Calculate the value inside the parentheses:
(−3)2+6(−3)+8=9−18+8=−1
Substitute:
101(−1)5+C=2
101(−1)+C=2
−101+C=2
C=2+101
C=1020+101
C=1021
Function F(x)
Substitute the value of C into F(x):
F(x)=101(x2+6x+8)5+1021
Therefore, the function F(x) is 101(x2+6x+8)5+1021.