Given A, B, and D are matrices with
A=(24−13),B=(ab21),D=3A+B
If AB=(117311), then matrix D is ....
Explanation
Given AB=(117311). Calculate the product AB
AB=(24−13)(ab21)
AB=(2a−b4a+3b4−18+3)
AB=(2a−b4a+3b311)
Equate with (117311)
2a−b=1…(1)
4a+3b=17…(2)
Eliminate a by multiplying equation (1) by 2
4a−2b=2…(1a)
4a+3b=17…(2)
Subtract equation (1a) from equation (2)
(2)−(1a):(4a+3b)−(4a−2b)=17−2
5b=15
b=3
Substitute b=3 into equation (1)
2a−3=1
2a=4
a=2
With a=2 and b=3, matrix B is
B=(2321)
Calculate D=3A+B
D=3(24−13)+(2321)
D=(612−39)+(2321)
D=(815−110)