Given matrices A=(35y−1), B=(x−356), and C=(−3y−19)
If A+B+C=(8−x5x−4), the value of x+2xy+y=....
Explanation
Given matrices A=(35y−1), B=(x−356), and C=(−3y−19)
Matrix Addition
Calculate A+B+C
(35y−1)+(x−356)+(−3y−19)=(8−x5x−4)
Add corresponding elements
(3+x+(−3)5+(−3)+yy+5+(−1)−1+6+9)=(8−x5x−4)
Simplify
(x2+yy+414)=(8−x5x−4)
Finding Values of x and y
From element in first row, first column
x=8
3+x−(−3)=8
3+x+3=8
x=2
From element in first row, second column
y+4=5x
y+5−(−1)=5x
y+5+1=5x
y+6=5(2)
y=10−6=4
Calculating Final Result
Substitute values x=2 and y=4
x+2xy+y=2+2(2)(4)+4
=2+16+4=22
Therefore, the value of x+2xy+y=22