The value of
x→0lim(xtan2x1−cos2x)
is ....
Explanation
To solve the limit limx→0(xtan2x1−cos2x), use trigonometric identities
Using Trigonometric Identities
Use the identity 1−cos2x=2sin2x
x→0lim(xtan2x1−cos2x)=x→0lim(xtan2x2sin2x)
=x→0lim(xtan2x2sin2x)
Separating the Limit
Separate into several parts using limit properties
=2x→0lim(xsinx)⋅(xsinx)⋅2x1⋅(tan2x2x)
=2x→0lim(xsinx)⋅(xsinx)⋅2x1⋅(tan2x2x)
Use the fact that limx→0xsinx=1
=2⋅1⋅1⋅2x1⋅x→0lim(tan2x2x)
=2⋅2x1⋅x=1
Therefore, the value of limx→0(xtan2x1−cos2x)=1