The first derivative of y=cos3x is ....
Explanation
Given y=cos3x
Derivative Using Chain Rule
Use the chain rule to differentiate the composite function
y′=3(cos2x)⋅(−sinx)
=−3cos2xsinx
=−3cosxcosxsinx
Using Trigonometric Identity
Use the identity 2sinxcosx=sin2x
=2−3cosx(2sinxcosx)
=2−3cosx⋅sin2x
Therefore, the first derivative of y=cos3x is y′=2−3cosx⋅sin2x