Command Palette

Search for a command to run...

Try Out

Set 3

1

Number 1

Point (a,b)(a, b) on the curve y=x2+2y = x^2 + 2 has the closest distance to the line y=xy = x. The value of a+ba + b that satisfies is....

2

Number 2

If the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0 has no real roots, then the graph of the function y=ax2+bx+cy = ax^2 + bx + c is tangent to the line y=xy = -x when....

3

Number 3

The equation of the tangent line to the parabola y=x+1y = \sqrt{x} + 1 passing through the point (8,0)(-8, 0) is....

4

Number 4

Given the function mx22x2+2mx+m3mx^2 - 2x^2 + 2mx + m - 3. For the function to always be below the xx-axis, the possible value of mm is....

5

Number 5

If a function y=x27y = \sqrt{x^2 - 7}, then

  1. y=43x73y = \frac{4}{3}x - \frac{7}{3} is the equation of the tangent line at x=4x = 4.
  2. The curve is a circle centered at (0,0)(0, 0).
  3. The line y=34x+6y = -\frac{3}{4}x + 6 intersects perpendicularly the tangent line at x=4x = 4.
  4. y=43x253y = \frac{4}{3}x - \frac{25}{3} is the tangent line of the curve at (4,3)(4, -3).
6

Number 6

Given a,1a,1a2+2aa, \frac{1}{a}, \frac{1}{a^2 + 2a}, a0a \neq 0, are respectively the 3rd, 4th, and 5th terms of a geometric sequence with ratio r1r \neq 1. The product of the first five terms of the geometric sequence is....

7

Number 7

Let unu_n denote the nn-th term of an arithmetic sequence. Given u1×u2=10u_1 \times u_2 = 10 and u1×u3=16u_1 \times u_3 = 16. If the terms of the arithmetic sequence are positive numbers, then u10=....u_{10} = ....

8

Number 8

The roots of the equation x37x2+px+q=0x^3 - 7x^2 + px + q = 0 form a geometric sequence with ratio 22. The value of p+qp + q is....

9

Number 9

The sum of an infinite geometric series has a value of 94\frac{9}{4}. With the first term u1=au_1 = a and ratio r=1ar = -\frac{1}{a}. If a>0a > 0, determine the value of 3u6u53u_6 - u_5.

10

Number 10

If the roots of the polynomial equation x312x2+(p+4)x(p+8)=0x^3 - 12x^2 + (p + 4)x - (p + 8) = 0 form an arithmetic sequence with common difference 22, then p36=....p - 36 = ....

11

Number 11

The value of limxπ2sec2x+2tan2x\lim_{x \to \frac{\pi}{2}} \frac{\sec 2x + 2}{\tan 2x} is....

12

Number 12

If p>0p > 0 and limxpx3+px2+qxxp=12\lim_{x \to p} \frac{x^3 + px^2 + qx}{x - p} = 12, then the value of pqp - q is....

13

Number 13

The value of limxytanx+tanyx2y22y2(1tanxtany)\lim_{x \to -y} \frac{\tan x + \tan y}{\frac{x^2 - y^2}{-2y^2} \cdot (1 - \tan x \tan y)} is....

14

Number 14

If b,c0b, c \neq 0 and limxa(xa)tan(b(ax))cos(c(xa))1=d\lim_{x \to a} \frac{(x - a) \tan(b(a - x))}{\cos(c(x - a)) - 1} = d, then b=....b = ....

15

Number 15

The value of limx3(x+6)tan(2x6)x2x6\lim_{x \to 3} \frac{(x + 6) \tan(2x - 6)}{x^2 - x - 6} is....

16

Number 16

The inequality log2(x2x)1\log_2(x^2 - x) \leq 1 has a solution....

17

Number 17

If x>y1x > y \geq 1 and log(x2+y2+2xy)=2log(x2y2)\log(x^2 + y^2 + 2xy) = 2 \log(x^2 - y^2), then logx(1+y)=....\log_x(1 + y) = ....

18

Number 18

If log3x+log4y2=5\log_3 x + \log_4 y^2 = 5, then the maximum value of log3xlog2y\log_3 x \cdot \log_2 y is....

19

Number 19

The solution set of the inequality log12(2x1)+log12(2x)2log12x\log_{\frac{1}{2}}(2x - 1) + \log_{\frac{1}{2}}(2 - x) \geq 2 \log_{\frac{1}{2}} x is....

20

Number 20

If x1x_1 and x2x_2 satisfy the equation (2logx1)1logx10=log10(2 \log x - 1) \cdot \frac{1}{\log_x 10} = \log 10, then x1x2=....x_1x_2 = ....

21

Number 21

The solution set of the inequality x523x5+2<0|x - 5|^2 - 3|x - 5| + 2 < 0 is....

22

Number 22

All values of xx that satisfy x+x2>3|x| + |x - 2| > 3 are....

23

Number 23

All values of xx that satisfy x+1>x+3|x + 1| > x + 3 and x+2<3|x + 2| < 3 are....

24

Number 24

All real numbers xx that satisfy 2x+1<52x|2x + 1| < 5 - |2x| are....

25

Number 25

The solution set of x314=112\left|\frac{x}{3} - \frac{1}{4}\right| = \frac{1}{12} is....

26

Number 26

Given the system of equations

x+y2=y3x + y^2 = y^3
y+x2=x3y + x^2 = x^3

The number of real pairs (x,y)(x, y) that satisfy the system of equations above is....

27

Number 27

Let α\alpha and β\beta be the roots of the equation x2bx+6=0x^2 - bx + 6 = 0. If α+β\alpha + \beta and αβ\alpha - \beta are the roots of the equation x24x+c=0x^2 - 4x + c = 0, the equation whose roots are bb and cc is....

28

Number 28

What is the value of aa such that the solution (x,y)(x, y) of the system of equations

2x+y=a21-2x + y = a^2 - 1
3x+2y=2a2+7a+53x + 2y = 2a^2 + 7a + 5

satisfies xy+3>0x\sqrt{y} + 3 > 0?

29

Number 29

Given the quadratic equation x24(k+1)x+k2k+7=0x^2 - 4(k + 1)x + k^2 - k + 7 = 0 where one root is three times the other root and all roots are greater than 22. The set of all values of kk that satisfy is....

30

Number 30

Both roots of the quadratic equation (m+2)x2(2m1)x+m+1=0(m + 2)x^2 - (2m - 1)x + m + 1 = 0 are negative. The range of values of mm that satisfies this is....

31

Number 31

Given that the polynomial f(x)f(x) when divided by x2+x2x^2 + x - 2 leaves a remainder of ax+bax + b, and when divided by x24x+3x^2 - 4x + 3 leaves a remainder of 2bx+a12bx + a - 1. If f(2)=7f(-2) = 7, then a2+b2a^2 + b^2 = ....

32

Number 32

If h(x)h(x) is the remainder of dividing f(x)=5x42x2+7x+9f(x) = 5x^4 - 2x^2 + 7x + 9 by x25x^2 - 5. The value of h(1)h(1) is....

33

Number 33

Function f(x)f(x) divided by (x1)(x - 1) has a remainder of 33, whereas if divided by (x2)(x - 2) has a remainder of 44. If f(x)f(x) is divided by x23x+2x^2 - 3x + 2, then the remainder is....

34

Number 34

A third-degree polynomial P(x)=x3+2x2+mx+nP(x) = x^3 + 2x^2 + mx + n divided by x24x+3x^2 - 4x + 3 has a remainder of 3x+23x + 2. Then the value of nn = ....

35

Number 35

Given the polynomial g(x)=x3+x2x+bg(x) = x^3 + x^2 - x + b is divisible by (x1)(x - 1). If g(x)g(x) is divided by (x21)(x^2 - 1), then the remainder is....

36

Number 36

The maximum value of the function y=4sinxsin(x60°)y = 4 \sin x \sin(x - 60°) is achieved when the value of xx = ....

37

Number 37

The values of xx, for 0°x360°0° \leq x \leq 360° that satisfy sinx+sin2x>sin3x\sin x + \sin 2x > \sin 3x are....

38

Number 38

If sinxsiny=13\sin x - \sin y = -\frac{1}{3} and cosxcosy=12\cos x - \cos y = \frac{1}{2}, then the value of sin(x+y)\sin(x + y) = ....

39

Number 39

If 3cosθsinθ3 \cos \theta - \sin \theta is expressed in the form rsin(θ+α)r \sin(\theta + \alpha) with r>0r > 0 and 0°<α<360°0° < \alpha < 360°, then....

40

Number 40

If sin2x+cos2x=16cosx+8sinx+cos2x\sin 2x + \cos 2x = -16 \cos x + 8 \sin x + \cos^2 x with 0xπ20 \leq x \leq \frac{\pi}{2}, then sin2x\sin 2x = ....