The maximum value of the function y=4sinxsin(x−60°) is achieved when the value of x = ....
Explanation
Determine the derivative of the function
y=4sinxsin(x−60°)
y′=4[cosx⋅sin(x−60°)+sinx⋅cos(x−60°)]
Use trigonometric identities sinAcosB+cosAsinB=sin(A+B) and cosAcosB−sinAsinB=cos(A+B)
y′=4[sin(x−60°)cosx+cos(x−60°)sinx]
y′=4sin[(x−60°)+x]
y′=4sin(2x−60°)
Or using the identity sinAsinB=21[cos(A−B)−cos(A+B)]
y=4sinxsin(x−60°)
y=4⋅21[cos(x−(x−60°))−cos(x+(x−60°))]
y=2[cos(60°)−cos(2x−60°)]
y=2cos60°−2cos(2x−60°)
y′=−2⋅(−sin(2x−60°))⋅2
y′=4sin(2x−60°)
The maximum value occurs when y′=0 or when sin(2x−60°) reaches its maximum value, which is sin(2x−60°)=1.
However, since y=2cos60°−2cos(2x−60°)=1−2cos(2x−60°), the maximum value occurs when cos(2x−60°) is minimum, which is cos(2x−60°)=−1.
cos(2x−60°)=−1
2x−60°=180°+k⋅360°
2x=240°+k⋅360°
x=120°+k⋅180°
With k an integer.