Basic Function Concepts
Functions in Python are blocks of code that can be used repeatedly to perform specific tasks. Imagine a function like an automatic coffee machine where you provide ingredients (input), then the machine processes and produces coffee (output). Every time you want coffee, you don't need to create a new machine, just use the same machine.
In programming, functions help us avoid writing the same code repeatedly. Functions have names, can accept parameters (input data), and can return values.
Function Structure and Syntax
Every function in Python has a basic structure consisting of several important components.
def function_name(parameter_list):  """Optional docstring to explain the function"""  # Code block to be executed  statement_1  statement_2  return return_value  # OptionalFunction components consist of:
- The defkeyword to start function definition
- Function name that follows Python variable naming rules
- Parentheses containing parameter list (can be empty)
- Colon to end the definition line
- Indented code block
- Optional returnstatement to return a value
How Function Calls Work
When you call a function, Python will execute the code inside that function. Let's look at a simple example of how functions work.
# Function definitiondef greet(name):  message = f"Hello, {name}!"  return message# Function callresult = greet("Alice")print(result)  # Output: Hello, Alice!# Direct call in printprint(greet("Bob"))  # Output: Hello, Bob!Process that occurs during function call:
- Python searches for the function definition with the called name
- Given arguments are sent to function parameters
- Code inside the function is executed
- If there's a return, the value is returned to the calling location
Parameters and Arguments
Parameters are variables defined in functions, while arguments are actual values sent when calling functions. Python provides several types of parameters for greater flexibility.
Positional and Keyword Parameters
def introduction(name, age, city="Jakarta"):  return f"My name is {name}, {age} years old, living in {city}"# Using positional parametersprint(introduction("Sari", 25))# Output: My name is Sari, 25 years old, living in Jakarta# Using keyword parametersprint(introduction(age=30, name="Budi", city="Bandung"))# Output: My name is Budi, 30 years old, living in Bandung# Mix of positional and keyword parametersprint(introduction("Andi", age=28, city="Surabaya"))# Output: My name is Andi, 28 years old, living in SurabayaImportant rules in parameter usage:
- Positional parameters must be given in order
- Keyword parameters can be given in any order
- Positional parameters must be written before keyword parameters
- Parameters with default values are optional
Variable Number of Parameters
Python allows functions to accept unlimited number of arguments using *args and **kwargs.
def calculate_total(*numbers):  """Calculate total from a number of numbers"""  total = 0  for num in numbers:      total += num  return total# Calling with various number of argumentsprint(calculate_total(1, 2, 3))        # Output: 6print(calculate_total(5, 10, 15, 20))  # Output: 50def student_info(name, **details):  """Display student information with additional details"""  print(f"Name: {name}")  for key, value in details.items():      print(f"{key.capitalize()}: {value}")# Calling with keyword argumentsstudent_info("Maya", age=20, major="Informatics", gpa=3.8)# Output:# Name: Maya# Age: 20# Major: Informatics# Gpa: 3.8Parameter *args collects additional positional arguments into a tuple, while **kwargs collects additional keyword arguments into a dictionary.
Function Return Values
Functions can return values using the return statement. If there's no return or return without a value, the function will return None.
def circle_area(radius):  """Calculate circle area"""  import math  return math.pi * radius ** 2def find_min_max(number_list):  """Return minimum and maximum values"""  if not number_list:      return None, None  return min(number_list), max(number_list)def print_message(message):  """Function without explicit return"""  print(f"Message: {message}")  # No return, automatically return None# Usage examplearea = circle_area(5)print(f"Circle area: {area:.2f}")  # Output: Circle area: 78.54min_val, max_val = find_min_max([3, 1, 4, 1, 5, 9])print(f"Min: {min_val}, Max: {max_val}")  # Output: Min: 1, Max: 9result = print_message("Hello World")  # Output: Message: Hello Worldprint(f"print_message function result: {result}")  # Output: print_message function result: NoneVariable Scope in Functions
Variables in Python have scope that determines where variables can be accessed. Understanding variable scope is important to avoid errors in programs.
Local and Global Variables
# Global variablecounter = 0def add_counter():  # Local variable with same name  counter = 10  print(f"Local counter: {counter}")def add_global_counter():  global counter  counter += 1  print(f"Global counter: {counter}")# Usage demonstrationprint(f"Initial counter: {counter}")       # Output: Initial counter: 0add_counter()                        # Output: Local counter: 10print(f"Counter after function: {counter}")  # Output: Counter after function: 0add_global_counter()                 # Output: Global counter: 1print(f"Final counter: {counter}")      # Output: Final counter: 1Variable lookup rules follow LEGB order:
- Local - inside current function
- Enclosing - in enclosing function (for nested functions)
- Global - at module level
- Built-in - Python built-in names
Functions as First-Class Objects
In Python, functions are first-class objects, meaning functions can be treated like other data. You can store functions in variables, pass functions as arguments, or return functions from other functions.
def multiply_two(x):  return x * 2def multiply_three(x):  return x * 3def apply_operation(function, value):  """Apply function to value"""  return function(value)# Store function in variableoperation = multiply_twoprint(operation(5))  # Output: 10# Store functions in listoperation_list = [multiply_two, multiply_three]for op in operation_list:  print(op(4))  # Output: 8 then 12# Pass function as argumentresult1 = apply_operation(multiply_two, 7)result2 = apply_operation(multiply_three, 7)print(f"Results: {result1}, {result2}")  # Output: Results: 14, 21Function Documentation with Docstring
Docstring is a string literal that appears as the first statement in a function definition. Docstring serves as documentation to explain the purpose and usage of the function.
def calculate_factorial(n):  """  Calculate factorial of a positive integer.    Parameters:      n (int): Positive integer    Returns:      int: Factorial value of n    Raises:      ValueError: If n is negative      TypeError: If n is not an integer    Example:      >>> calculate_factorial(5)      120      >>> calculate_factorial(0)      1  """  if not isinstance(n, int):      raise TypeError("Input must be an integer")  if n < 0:      raise ValueError("Input must be positive or zero")    if n <= 1:      return 1  return n * calculate_factorial(n - 1)# Access docstringprint(calculate_factorial.__doc__)# Use functionprint(calculate_factorial(5))  # Output: 120print(calculate_factorial(0))  # Output: 1Good docstring writing conventions:
- First line contains brief function summary
- If detailed explanation is needed, separate with blank line
- Explain parameters, return values, and possible exceptions
- Provide usage examples if helpful
Nested Functions and Closure
Python allows function definitions inside other functions. Inner functions can access variables from outer functions, creating a concept called closure.
def create_multiplier(factor):  """Create multiplier function with specific factor"""    def multiplier(value):      """Inner function that multiplies value by factor"""      return value * factor    return multiplier# Create specific multiplier functionsmultiply_two = create_multiplier(2)multiply_five = create_multiplier(5)print(multiply_two(10))   # Output: 20print(multiply_five(4))   # Output: 20def simple_calculator():  """Calculator with nested functions"""    def add(a, b):      return a + b    def subtract(a, b):      return a - b    def multiply(a, b):      return a * b    # Return dictionary containing functions  return {      'add': add,      'subtract': subtract,      'multiply': multiply  }# Use calculatorcalc = simple_calculator()print(calc['add'](5, 3))  # Output: 8print(calc['subtract'](10, 4)) # Output: 6print(calc['multiply'](6, 7))    # Output: 42Error Handling in Functions
Good functions should be able to handle error situations gracefully. Python provides exception handling mechanisms to handle possible errors.
def safe_divide(numerator, denominator):  """  Perform division with error handling.    Returns:      tuple: (result, error_message)  """  try:      result = numerator / denominator      return result, None  except ZeroDivisionError:      return None, "Error: Cannot divide by zero"  except TypeError:      return None, "Error: Input must be numbers"def convert_to_int(value):  """Convert value to integer with validation"""  try:      return int(value)  except ValueError:      print(f"Warning: '{value}' cannot be converted to integer")      return None  except TypeError:      print("Error: Invalid input for conversion")      return None# Usage exampleresult, error = safe_divide(10, 2)if error:  print(error)else:  print(f"Division result: {result}")  # Output: Division result: 5.0result, error = safe_divide(10, 0)if error:  print(error)  # Output: Error: Cannot divide by zero# Test conversionnumber1 = convert_to_int("123")    # Success, return 123number2 = convert_to_int("abc")    # Output: Warning: 'abc' cannot be converted to integernumber3 = convert_to_int([1, 2])   # Output: Error: Invalid input for conversion