Given A, B, and D are matrices with
A=(24​−13​),B=(ab​21​),D=3A+B
If AB=(117​311​), then matrix D is ....
Explanation
Given AB=(117​311​). Calculate the product AB
AB=(24​−13​)(ab​21​)
AB=(2a−b4a+3b​4−18+3​)
AB=(2a−b4a+3b​311​)
Equate with (117​311​)
2a−b=1…(1)
4a+3b=17…(2)
Eliminate a by multiplying equation (1) by 2
4a−2b=2…(1a)
4a+3b=17…(2)
Subtract equation (1a) from equation (2)
(2)−(1a):(4a+3b)−(4a−2b)=17−2
5b=15
b=3
Substitute b=3 into equation (1)
2a−3=1
2a=4
a=2
With a=2 and b=3, matrix B is
B=(23​21​)
Calculate D=3A+B
D=3(24​−13​)+(23​21​)
D=(612​−39​)+(23​21​)
D=(815​−110​)