Given functions f(x)=x−42x−5,x=4 and g(x)=3x+8
The inverse of (f∘g)(x) is ....
Explanation
Given f(x)=x−42x−5 with x=4 and g(x)=3x+8
Determining the Composite Function
Calculate the composite function (f∘g)(x)=f(g(x))
(f∘g)(x)=f(g(x))
=f(3x+8)
=(3x+8)−42(3x+8)−5
=3x+8−46x+16−5
=3x+46x+11
Determining the Inverse Function
Let y=3x+46x+11, then solve for x in terms of y
y=3x+46x+11
3xy+4y=6x+11
3xy−6x=11−4y
x(3y−6)=11−4y
x=3y−611−4y
Replace y with x to get the inverse function
(f∘g)−1(x)=3x−611−4x
The condition is 3x−6=0⇒x=2
Therefore, the inverse of (f∘g)(x) is 3x−611−4x with x=2