The value of
sin75∘−sin165∘
is ....
Explanation
To solve sin75∘−sin165∘, use the sine difference formula
sinA−sinB=2cos21(A+B)sin21(A−B)
Applying the Formula
Substitute A=75∘ and B=165∘
sin75∘−sin165∘=2cos21(75∘+165∘)sin21(75∘−165∘)
=2cos120∘sin(−45∘)
Simplifying
Use the identities cos120∘=cos(180∘−60∘)=−cos60∘ and sin(−45∘)=−sin45∘
=2⋅cos(180∘−60∘)⋅(−sin45∘)
=2⋅(−cos60∘)⋅(−sin45∘)
=2cos60∘sin45∘
Substitute values cos60∘=21 and sin45∘=212
=2⋅(21)⋅(212)
=1⋅212
=212
Therefore, the value of sin75∘−sin165∘=212