Command Palette

Search for a command to run...

Try Out

Set 2

1

Number 1

If the tangent line to the curve y=x33x29xy = x^3 - 3x^2 - 9x at point (a,b)(a, b) has a gradient of 1515, then the possible value of a+ba + b is....

2

Number 2

Given x2+2xy+4x=3x^2 + 2xy + 4x = -3 and 9y2+4xy+12y=19y^2 + 4xy + 12y = -1. The value of x+3yx + 3y is....

3

Number 3

If an integer pp is a root of f(x)=0f(x) = 0 with f(x)=px23xp3f(x) = px^2 - 3x - p - 3, then the gradient of the tangent line to the curve y=f(x)y = f(x) at the point with abscissa x=px = p is....

4

Number 4

If (p,q)(p, q) is the vertex point of the graph of function f(x)=ax2+2ax+a+1f(x) = ax^2 + 2ax + a + 1, with f(a)=19f(a) = 19, then p+2q+3a=....p + 2q + 3a = ....

5

Number 5

Given a straight line passing through (0,2)(0, -2) and (32,0)\left(\frac{3}{2}, 0\right). The distance from the parabola y=x21y = x^2 - 1 to that line is....

6

Number 6

Given a sequence 12,34,18,316,...-\frac{1}{2}, \frac{3}{4}, -\frac{1}{8}, \frac{3}{16}, ..., the 1212th term of this sequence is....

7

Number 7

Given a sequence 0,34,316,964,...0, \frac{3}{4}, \frac{3}{16}, \frac{9}{64}, ..., then the 1212th term of this sequence is....

8

Number 8

Given a sequence 0,56,536,35216,...0, \frac{5}{6}, \frac{5}{36}, \frac{35}{216}, ..., the 1212th term of this sequence is....

9

Number 9

A geometric sequence has 33 first terms a,b,b2a, b, b^2. If aa and bb are roots of the quadratic equation 2x2+kx+6=02x^2 + kx + 6 = 0, then the fourth term of the sequence and the value of kk respectively are....

10

Number 10

Suppose x1x_1 and x2x_2 are integers that are roots of the quadratic equation x2(2k+4)x+(3k+4)=0x^2 - (2k + 4)x + (3k + 4) = 0. If x1,k,x2x_1, k, x_2 form the first three terms of a geometric series, then the formula for the nnth term of the series is....

11

Number 11

limx(5x+53x)1x=....\lim_{x \to \infty} (5^x + 5^{3x})^{\frac{1}{x}} = ....
12

Number 12

Given f(x)=sin2xf(x) = \sin^2 x. If f(x)f'(x) represents the first derivative of f(x)f(x), then

limhh[f(x+1h)f(x)]=....\lim_{h \to \infty} h \left[f'\left(x + \frac{1}{h}\right) - f'(x)\right] = ....
13

Number 13

Given f(x)=1+xf(x) = \sqrt{1 + x}. The value of limh0f(3+2h2)f(33h2)h2\lim_{h \to 0} \frac{f(3 + 2h^2) - f(3 - 3h^2)}{h^2} is....

14

Number 14

limx0cosxsinxtanxx2sinx=....\lim_{x \to 0} \frac{\cos x \sin x - \tan x}{x^2 \sin x} = ....
15

Number 15

If limx31ax+13bx3+27=135\lim_{x \to -3} \frac{\frac{1}{ax} + \frac{1}{3}}{bx^3 + 27} = -\frac{1}{3^5}, the value of a+ba + b for aa and bb positive integers is....

16

Number 16

If loga2(3a8)4log3a=a2\log_{a^2}(3^a - 8)^{-4} \cdot \log_3 \sqrt{a} = a - 2, then loga(18)=....\log_a\left(\frac{1}{8}\right) = ....

17

Number 17

If (log2x)2(log2y)2=log2256(\log_2 x)^2 - (\log_2 y)^2 = \log_2 256 and log2x2log2y2=log216\log_2 x^2 - \log_2 y^2 = \log_2 16. Then the value of log2x6y2\log_2 x^6 y^{-2} is....

18

Number 18

If 2log4xlog4(4x+3)=12 \log_4 x - \log_4(4x + 3) = -1, then log2x=....\log_2 x = ....

19

Number 19

If aa satisfies the equation log22x+log33x=log44x2\log_2 2x + \log_3 3x = \log_4 4x^2, then the value of loga3=....\log_a 3 = ....

20

Number 20

If α\alpha and β\beta are roots of the equation log3xlogx(2x4+4x)=1\log_3 x - \log_x\left(2x - 4 + \frac{4}{x}\right) = 1, then α+β=....\alpha + \beta = ....

21

Number 21

If b>ab > a, the value of xx that satisfies x2a+ab|x - 2a| + a \leq b is....

22

Number 22

The solution set of 9x2x+39 - x^2 \geq |x + 3| is....

23

Number 23

The solution set of 16x2x+416 - x^2 \leq |x + 4| is....

24

Number 24

The solution set of inequality logx+1log3+log2x1\log|x + 1| \geq \log 3 + \log|2x - 1| is....

25

Number 25

The number of real numbers xx that satisfy the equation x24=x+x2|x^2 - 4| = x + |x - 2| is....

26

Number 26

Given the function mx22x2+2mx+m3mx^2 - 2x^2 + 2mx + m - 3. For the function to always be below the xx axis, the possible value of mm is....

27

Number 27

If x,y,zx, y, z satisfy the system of equations

3x+2yz=33x + 2y - z = 3
2x+y3z=42x + y - 3z = 4
xy+2z=1x - y + 2z = -1

Then the value of 2x+2y3z=2x + 2y - 3z = ....

28

Number 28

If the roots of the equation x2ax+b=0x^2 - ax + b = 0 satisfy the equation 2x2(a+3)x+(3b2)=02x^2 - (a + 3)x + (3b - 2) = 0, then....

  1. a=3a = 3
  2. b=2b = 2
  3. 2a2ab+3b=02a - 2ab + 3b = 0
  4. ab=5ab = 5
29

Number 29

If a function y=x27y = \sqrt{x^2 - 7}, then....

  1. y=43x73y = \frac{4}{3}x - \frac{7}{3} is the equation of the tangent line at x=4x = 4
  2. The curve is a circle centered at (0,0)(0,0)
  3. The line y=34x+6y = -\frac{3}{4}x + 6 intersects perpendicularly with the tangent line at x=4x = 4
  4. y=43x253y = \frac{4}{3}x - \frac{25}{3} is the tangent line to the curve at (4,3)(4, -3)
30

Number 30

If kk is the smallest positive integer such that two quadratic functions f(x)=(k1)x2+kx1f(x) = (k - 1)x^2 + kx - 1 and g(x)=(k2)x2+x+2kg(x) = (k - 2)x^2 + x + 2k intersect at two different points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2), then the quadratic equation with roots x1+x2x_1 + x_2 and y1+y2y_1 + y_2 is....

31

Number 31

If the polynomial f(x)f(x) is divisible by (x1)(x - 1), then the remainder when f(x)f(x) is divided by (x1)(x+1)(x - 1)(x + 1) is....

32

Number 32

If the polynomial ax3+2x2+5x+bax^3 + 2x^2 + 5x + b is divided by (x21)(x^2 - 1) and gives a remainder of (6x+5)(6x + 5), then a+3ba + 3b equals....

33

Number 33

Given that p(x)p(x) and g(x)g(x) are two different polynomials, with p(10)=mp(10) = m and g(10)=ng(10) = n. If p(x)h(x)=(p(x)g(x)1)(p(x)+g(x))p(x)h(x) = \left(\frac{p(x)}{g(x)} - 1\right)(p(x) + g(x)), h(10)=1615h(10) = -\frac{16}{15}, then the maximum value of m+n=|m + n| = ....

34

Number 34

Given that the polynomial f(x)f(x) divided by 2x2x12x^2 - x - 1 has a remainder of 4axb4ax - b and divided by 2x2+3x+12x^2 + 3x + 1 has a remainder of 2bx+a11-2bx + a - 11. If f(x2)f(x - 2) is divisible by x3x - 3, then a+2b+6=a + 2b + 6 = ....

35

Number 35

Given that the polynomial f(x)f(x) divided by x2+3x+2x^2 + 3x + 2 has a remainder of 3bx+a23bx + a - 2 and divided by x22x3x^2 - 2x - 3 has a remainder of ax2bax - 2b. If f(3)+f(2)=6f(3) + f(-2) = 6, then a+b=a + b = ....

36

Number 36

If angles AA and BB satisfy the system of equations

2tanA+tanB=42 \tan A + \tan B = 4
tanA3tanB=172\tan A - 3 \tan B = -\frac{17}{2}

Then tan(2A+B)\tan(2A + B) equals....

37

Number 37

Given a rectangular prism ABCD.EFGHABCD.EFGH where AB=6AB = 6 cm, BC=8BC = 8 cm, and BF=4BF = 4 cm. If α\alpha is the angle between AHAH and BDBD, then cos2α=\cos 2\alpha = ....

38

Number 38

The function f(x)=3sinx+3cosxf(x) = 3 \sin x + 3 \cos x defined on the interval (0,2π)(0, 2\pi) reaches its maximum value at x=x = ....

39

Number 39

If [tanx11tanx][cos2xsinxcosx]=[ab]12\begin{bmatrix} \tan x & 1 \\ 1 & \tan x \end{bmatrix} \begin{bmatrix} \cos^2 x \\ \sin x \cos x \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \frac{1}{2} where b=2ab = 2a, then 0xπ0 \leq x \leq \pi that satisfies is....

  1. π6\frac{\pi}{6}
  2. π12\frac{\pi}{12}
  3. 5π6\frac{5\pi}{6}
  4. 5π12\frac{5\pi}{12}
40

Number 40

If cos(A+B)=25\cos(A + B) = \frac{2}{5}, cosAcosB=34\cos A \cos B = \frac{3}{4}, then the value of tanAtanB=\tan A \tan B = ....