If b,c=0 and limx→acos(c(x−a))−1(x−a)tan(b(a−x))=d, then b=....
Explanation
Change the denominator to
x→alimcos(c(x−a))−1(x−a)tan(b(a−x))=d
x→alim−2sin2(21c(x−a))(x−a)tan(b(a−x))=d
x→alim−2sin(21c(x−a))x−a⋅sin(21c(x−a))tan(b(a−x))=d
Because x→a, then x−a→0 and a−x→0. Using limit properties limu→0usinu=1 and limu→0utanu=1
−2⋅21c1⋅21cb(−1)=d
−c1⋅21c−b=d
21c2b=d
c22b=d
2b=c2d
b=21c2d