If log3x+log4y2=5, then the maximum value of log3x⋅log2y is....
Explanation
Let a=log3x and b=log2y. The first equation will be obtained
log3x+log4y2=5
log3x+log22y2=5
log3x+22log2y=5
log3x+log2y=5
a+b=5
a=5−b...(1)
Form log3x⋅log2y=a⋅b
ab=(5−b)b
f(b)=5b−b2
This means the maximum value of log3x⋅log2y is equal to the maximum value of the function f(b)=5b−b2. The condition for the maximum of the function is f′(b)=0
f′(b)=0
5−2b=0
2b=5
b=25
Thus the value of a
a=5−b
a=5−25
a=210−25
a=25
So the value of ab will be maximum when a=25 and b=25. The result of their product is
ab=25⋅25=425