If x1 and x2 satisfy the equation (2logx−1)⋅logx101=log10, then x1x2=....
Explanation
Let p=log10x=logx, then
(2logx−1)⋅logx101=log10
(2log10x−1)⋅log10x=1
(2p−1)p=1
2p2−p−1=0
(2p+1)(p−1)=0
p=−21∪p=1
Determining the value of x from p
p=−21→log10x=−21→x1=10−21
p=1→log10x=1→x2=10
So the product of x1x2
10−21⋅10=1021=10