The values of x, for 0°≤x≤360° that satisfy sinx+sin2x>sin3x are....
Explanation
Given the form of the inequality
sinx+sin2x>sin3x
Subtract sinx from both sides
sin2x>sin3x−sinx
Use trigonometric identities sin2x=2sinxcosx and sinA−sinB=2cos2A+Bsin2A−B
2sinxcosx>2cos23x+xsin23x−x
2sinxcosx>2cos2xsinx
Divide both sides by 2 and use the identity cos2x=2cos2x−1
sinxcosx>cos2xsinx
sinxcosx>(2cos2x−1)sinx
sinxcosx−(2cos2x−1)sinx>0
sinx(cosx−2cos2x+1)>0
sinx(2cos2x−cosx−1)<0
Factor 2cos2x−cosx−1=(2cosx+1)(cosx−1)
sinx(2cosx+1)(cosx−1)<0
Thus, the zeros are
sinx=0⇒x=0°,180°,360°
2cosx+1=0⇒cosx=−21⇒x=120°,240°
cosx−1=0⇒cosx=1⇒x=0°,360°
The critical points are x=0°, x=120°, x=180°, x=240°, and x=360°.
The number line is as follows
Number Line
Critical points: 0°, 120°, 180°, 240°, and 360°.
Interval 1
Interval 2
Interval 3
Interval 4
0°
120°
120°
180°
180°
240°
240°
360°
By testing the sign on each interval, we obtain that the inequality sinx(2cosx+1)(cosx−1)<0 is satisfied for 0°<x<120° and 180°<x<240°.
So the solution set is 0°<x<120°,180°<x<240°.