If sin2x+cos2x=−16cosx+8sinx+cos2x with 0≤x≤2π, then sin2x = ....
Explanation
Use the following trigonometric identities
sin2x=2sinxcosx
cos2x=2cos2x−1
Then
sin2x+cos2x=−16cosx+8sinx+cos2x
2sinxcosx+2cos2x−1=−16cosx+8sinx+cos2x
2sinxcosx+2cos2x−1+16cosx−8sinx−cos2x=0
2sinxcosx+cos2x+16cosx−8sinx−1=0
2cosx(sinx+8)−sin2x−8sinx=0
2cosx(sinx+8)−sinx(sinx+8)=0
(2cosx−sinx)(sinx+8)=0
So 2cosx−sinx=0 or sinx+8=0.
Since 0≤x≤2π, then sinx≥0, so sinx+8=0.
Therefore 2cosx−sinx=0
sinx=2cosx
cosxsinx=2
tanx=2=12
The opposite side is 2, and the adjacent side is 1. Then the hypotenuse is
Hyp=22+12=4+1=5
Thus
sinx=hypopp=52
cosx=hypadj=51
Then the value of sin2x
sin2x=2sinxcosx
sin2x=2⋅52⋅51
sin2x=54