Source codeVideos
Quadratic Functions

Quadratic Formula

Nabil Akbarazzima Fatih

Mathematics

What is the Quadratic Formula?

A quadratic equation is an equation in the form ax2+bx+c=0ax^2 + bx + c = 0 where a0a \neq 0, where:

  • aa is the coefficient of x2x^2
  • bb is the coefficient of xx
  • cc is the constant term

To solve a quadratic equation ax2+bx+c=0ax^2 + bx + c = 0, we can use the formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

This formula will give us two values of xx which are the roots of the quadratic equation:

  • x1=b+b24ac2ax_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} (using the plus sign)
  • x2=bb24ac2ax_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} (using the minus sign)

The part b24acb^2 - 4ac is called the discriminant and determines the nature of the roots:

  • If b24ac>0b^2 - 4ac > 0: Two distinct real roots
  • If b24ac=0b^2 - 4ac = 0: One real root (a repeated root)
  • If b24ac<0b^2 - 4ac < 0: No real roots

Deriving the Quadratic Formula

The quadratic formula can be derived from the method of completing the square. Let's see how:

Starting with the standard form of a quadratic equation:

ax2+bx+c=0ax^2 + bx + c = 0

Step 1: Divide all terms by aa (the coefficient of x2x^2):

x2+bax+ca=0x^2 + \frac{b}{a}x + \frac{c}{a} = 0

Step 2: Move the constant term to the right side:

x2+bax=cax^2 + \frac{b}{a}x = -\frac{c}{a}

Step 3: Add the square of half the coefficient of xx to both sides:

x2+bax+b24a2=ca+b24a2x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} = -\frac{c}{a} + \frac{b^2}{4a^2}

Step 4: The left side now forms a perfect square:

(x+b2a)2=b24a2ca\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}

Step 5: Simplify the right side:

(x+b2a)2=b24ac4a2\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}

Step 6: Take the square root of both sides:

x+b2a=±b24ac2ax + \frac{b}{2a} = \pm\frac{\sqrt{b^2 - 4ac}}{2a}

Step 7: Solve for xx:

x=b2a±b24ac2a=b±b24ac2ax = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Thus, we obtain the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Using the Quadratic Formula

To solve a quadratic equation using the formula, follow these steps:

  1. Make sure the quadratic equation is in standard form ax2+bx+c=0ax^2 + bx + c = 0
  2. Identify the values of aa, bb, and cc
  3. Substitute these values into the formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  4. Calculate the values of xx to find the roots of the equation

Examples

Example 1: Solve the equation x2+5x+6=0x^2 + 5x + 6 = 0

Identify the values: a=1a = 1, b=5b = 5, and c=6c = 6

Substitute into the formula:

x=5±5241621=5±25242=5±12=5±12x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1} = \frac{-5 \pm \sqrt{25 - 24}}{2} = \frac{-5 \pm \sqrt{1}}{2} = \frac{-5 \pm 1}{2}

For x1x_1, take the positive sign:

x1=5+12=42=2x_1 = \frac{-5 + 1}{2} = \frac{-4}{2} = -2

For x2x_2, take the negative sign:

x2=512=62=3x_2 = \frac{-5 - 1}{2} = \frac{-6}{2} = -3

Therefore, the roots of the equation are x1=2x_1 = -2 and x2=3x_2 = -3

Example 2: Solve the equation 2x27x+3=02x^2 - 7x + 3 = 0

Identify the values: a=2a = 2, b=7b = -7, and c=3c = 3

Substitute into the formula:

x=(7)±(7)242322=7±49244=7±254=7±54x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot 2 \cdot 3}}{2 \cdot 2} = \frac{7 \pm \sqrt{49 - 24}}{4} = \frac{7 \pm \sqrt{25}}{4} = \frac{7 \pm 5}{4}

For x1x_1, take the positive sign:

x1=7+54=124=3x_1 = \frac{7 + 5}{4} = \frac{12}{4} = 3

For x2x_2, take the negative sign:

x2=754=24=12x_2 = \frac{7 - 5}{4} = \frac{2}{4} = \frac{1}{2}

Therefore, the roots of the equation are x1=3x_1 = 3 and x2=12x_2 = \frac{1}{2}

The Discriminant of a Quadratic Equation

The expression b24acb^2 - 4ac in the quadratic formula is called the discriminant, often denoted by DD or Δ\Delta.

The discriminant provides information about the nature of the roots of a quadratic equation:

  • If D>0D > 0: The equation has two distinct real roots
  • If D=0D = 0: The equation has one real root (a repeated root)
  • If D<0D < 0: The equation has no real roots (the roots are complex numbers)

Relationship Between Roots and Coefficients

If x1x_1 and x2x_2 are the roots of the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0, then:

  1. Sum of the roots: x1+x2=bax_1 + x_2 = -\frac{b}{a}
  2. Product of the roots: x1x2=cax_1 \cdot x_2 = \frac{c}{a}

Proving the Relationships

From the quadratic formula, we know that:

x1=b+b24ac2aandx2=bb24ac2ax_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}

Adding the roots:

x1+x2=b+b24ac2a+bb24ac2a=2b2a=bax_1 + x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-2b}{2a} = -\frac{b}{a}

Multiplying the roots:

x1x2=b+b24ac2abb24ac2a=b2(b24ac)24a2=b2(b24ac)4a2=4ac4a2=cax_1 \cdot x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{b^2 - (\sqrt{b^2 - 4ac})^2}{4a^2} = \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}

Creating New Quadratic Equations from Known Roots

If we know the roots of a quadratic equation, we can create a new quadratic equation. Suppose pp and qq are the roots of a quadratic equation, then the equation is:

(xp)(xq)=0(x - p)(x - q) = 0

Or in standard form:

x2(p+q)x+pq=0x^2 - (p+q)x + pq = 0

Application Examples

  1. The quadratic equation x2+4x+3=0x^2 + 4x + 3 = 0 has roots pp and qq.

    Find the quadratic equation with roots 2p2p and 2q2q.

    Step 1: Find the values of p+qp + q and pqp \cdot q

    p+q=ba=41=4p + q = -\frac{b}{a} = -\frac{4}{1} = -4
    pq=ca=31=3p \cdot q = \frac{c}{a} = \frac{3}{1} = 3

    Step 2: Calculate the sum and product of the new roots

    2p+2q=2(p+q)=2(4)=82p + 2q = 2(p + q) = 2(-4) = -8
    2p2q=4(pq)=43=122p \cdot 2q = 4(p \cdot q) = 4 \cdot 3 = 12

    Step 3: Create the new quadratic equation

    x2(8)x+12=0x^2 - (-8)x + 12 = 0
    x2+8x+12=0x^2 + 8x + 12 = 0
  2. The quadratic equation x2+4x21=0x^2 + 4x - 21 = 0 has roots pp and qq.

    Find the quadratic equation with roots 12p\frac{1}{2p} and 12q\frac{1}{2q}.

    Step 1: Find the values of p+qp + q and pqp \cdot q

    p+q=ba=41=4p + q = -\frac{b}{a} = -\frac{4}{1} = -4
    pq=ca=211=21p \cdot q = \frac{c}{a} = \frac{-21}{1} = -21

    Step 2: Calculate the sum and product of the new roots

    12p+12q=12(q+ppq)=12421=12421=442=221\frac{1}{2p} + \frac{1}{2q} = \frac{1}{2} \left(\frac{q + p}{pq}\right) = \frac{1}{2} \cdot \frac{-4}{-21} = \frac{1}{2} \cdot \frac{4}{21} = \frac{4}{42} = \frac{2}{21}
    12p12q=14pq=14(21)=184=184\frac{1}{2p} \cdot \frac{1}{2q} = \frac{1}{4pq} = \frac{1}{4 \cdot (-21)} = \frac{1}{-84} = -\frac{1}{84}

    Step 3: Create the new quadratic equation

    x2421x184=0x^2 - \frac{4}{21}x - \frac{1}{84} = 0

Practice Problems

Solve the following quadratic equations using the quadratic formula:

  1. x2+5x+6=0x^2 + 5x + 6 = 0
  2. 2x2+6x+3=02x^2 + 6x + 3 = 0
  3. 6x2+2x+16=06x^2 + 2x + \frac{1}{6} = 0
  4. 12x2+4x+6=0\frac{1}{2}x^2 + 4x + 6 = 0
  5. 23x2+2x12=0\frac{2}{3}x^2 + 2x - 12 = 0

Answer Key

  1. Solution to the quadratic equation x2+5x+6=0x^2 + 5x + 6 = 0

    Identify: a=1a = 1, b=5b = 5, c=6c = 6

    x1,2=5±5241621x_{1,2} = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1}
    =5±25242= \frac{-5 \pm \sqrt{25 - 24}}{2}
    =5±12= \frac{-5 \pm \sqrt{1}}{2}
    =5±12= \frac{-5 \pm 1}{2}

    For x1x_1:

    x1=5+12=42=2x_1 = \frac{-5 + 1}{2} = \frac{-4}{2} = -2

    For x2x_2:

    x2=512=62=3x_2 = \frac{-5 - 1}{2} = \frac{-6}{2} = -3

    Therefore, the roots of the equation are x1=2x_1 = -2 and x2=3x_2 = -3.

  2. Solution to the quadratic equation 2x2+6x+3=02x^2 + 6x + 3 = 0

    Identify: a=2a = 2, b=6b = 6, c=3c = 3

    x1,2=6±6242322x_{1,2} = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 2 \cdot 3}}{2 \cdot 2}
    =6±36244= \frac{-6 \pm \sqrt{36 - 24}}{4}
    =6±124= \frac{-6 \pm \sqrt{12}}{4}
    =6±234= \frac{-6 \pm 2\sqrt{3}}{4}
    =3±32= \frac{-3 \pm \sqrt{3}}{2}

    For x1x_1:

    x1=3+32x_1 = \frac{-3 + \sqrt{3}}{2}

    For x2x_2:

    x2=332x_2 = \frac{-3 - \sqrt{3}}{2}

    Therefore, the roots of the equation are x1=3+32x_1 = \frac{-3 + \sqrt{3}}{2} and x2=332x_2 = \frac{-3 - \sqrt{3}}{2}.

  3. Solution to the quadratic equation 6x2+2x+16=06x^2 + 2x + \frac{1}{6} = 0

    Identify: a=6a = 6, b=2b = 2, c=16c = \frac{1}{6}

    x1,2=2±22461626x_{1,2} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 6 \cdot \frac{1}{6}}}{2 \cdot 6}
    =2±4412= \frac{-2 \pm \sqrt{4 - 4}}{12}
    =2±012= \frac{-2 \pm 0}{12}
    =212=16= \frac{-2}{12} = -\frac{1}{6}

    Since the discriminant b24ac=0b^2 - 4ac = 0, the equation has one root (a repeated root).

    Therefore, the root of the equation is x1=x2=16x_1 = x_2 = -\frac{1}{6}.

  4. Solution to the quadratic equation 12x2+4x+6=0\frac{1}{2}x^2 + 4x + 6 = 0

    Identify: a=12a = \frac{1}{2}, b=4b = 4, c=6c = 6

    x1,2=4±424126212x_{1,2} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot \frac{1}{2} \cdot 6}}{2 \cdot \frac{1}{2}}
    =4±16121= \frac{-4 \pm \sqrt{16 - 12}}{1}
    =4±41= \frac{-4 \pm \sqrt{4}}{1}
    =4±2= -4 \pm 2

    For x1x_1:

    x1=4+2=2x_1 = -4 + 2 = -2

    For x2x_2:

    x2=42=6x_2 = -4 - 2 = -6

    Therefore, the roots of the equation are x1=2x_1 = -2 and x2=6x_2 = -6.

  5. Solution to the quadratic equation 23x2+2x12=0\frac{2}{3}x^2 + 2x - 12 = 0

    Identify: a=23a = \frac{2}{3}, b=2b = 2, c=12c = -12

    x1,2=2±22423(12)223x_{1,2} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot \frac{2}{3} \cdot (-12)}}{2 \cdot \frac{2}{3}}
    =2±4+324/3= \frac{-2 \pm \sqrt{4 + 32}}{4/3}
    =2±364/3= \frac{-2 \pm \sqrt{36}}{4/3}
    =2±64/3= \frac{-2 \pm 6}{4/3}
    =3(2±6)4= \frac{3(-2 \pm 6)}{4}

    For x1x_1:

    x1=3(2+6)4=344=3x_1 = \frac{3(-2 + 6)}{4} = \frac{3 \cdot 4}{4} = 3

    For x2x_2:

    x2=3(26)4=3(8)4=6x_2 = \frac{3(-2 - 6)}{4} = \frac{3 \cdot (-8)}{4} = -6

    Therefore, the roots of the equation are x1=3x_1 = 3 and x2=6x_2 = -6.