Source codeVideos

Command Palette

Search for a command to run...

Complex Number

Modulus and Argument of Complex Numbers

What are Modulus and Argument?

A complex number z=x+iyz = x + iy can be represented as a point (x,y)(x, y) on the complex plane (similar to the Cartesian plane). Besides being a point, we can also view it as a vector starting from the origin (0,0)(0, 0) to the point (x,y)(x, y).

This vector has a length and a direction. This length and direction are what we call the Modulus and Argument.

Modulus of a Complex Number

The Modulus of a complex number z=x+iyz = x + iy, written as z|z|, is the distance from the origin (0,0)(0,0) to the point (x,y)(x, y) on the complex plane. This is the same as the length of the vector representing zz.

Modulus Visualization
The modulus z|z| is the length of the vector from the origin to the point zz. We can see it as the hypotenuse of a right-angled triangle.

To calculate the modulus, we can use the Pythagorean Theorem on the right-angled triangle formed by the real part (xx), the imaginary part (yy), and the modulus (z|z|) as the hypotenuse.

Definition of Modulus:

The modulus of the complex number z=x+iyz = x + iy is:

z=x2+y2|z| = \sqrt{x^2 + y^2}

The modulus is always non-negative (never negative) because it represents a distance.

Calculating the Modulus

  1. Find the modulus of z1=3+4iz_1 = 3 + 4i, with x=3,y=4x=3, y=4

    z1=32+42=9+16=25=5|z_1| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
  2. Find the modulus of z2=12iz_2 = -1 - 2i, with x=1,y=2x=-1, y=-2

    z2=(1)2+(2)2=1+4=5|z_2| = \sqrt{(-1)^2 + (-2)^2} = \sqrt{1 + 4} = \sqrt{5}
  3. Find the modulus of z3=5z_3 = 5, with x=5,y=0x=5, y=0

    z3=52+02=25=5|z_3| = \sqrt{5^2 + 0^2} = \sqrt{25} = 5

    (The modulus of a real number is its absolute value).

  4. Find the modulus of z4=2iz_4 = -2i, with x=0,y=2x=0, y=-2

    z4=02+(2)2=4=2|z_4| = \sqrt{0^2 + (-2)^2} = \sqrt{4} = 2

Argument of a Complex Number

The Argument of a non-zero complex number z=x+iyz = x + iy, written as arg(z)\arg(z) or θ\theta, is the angle formed by the vector zz with the positive real axis on the complex plane. This angle is usually measured in radians or degrees.

From basic trigonometry on the same right-angled triangle as in the modulus visualization, we know the relationships:

x=zcosθx = |z| \cos \theta
y=zsinθy = |z| \sin \theta
tanθ=yx(if x0)\tan \theta = \frac{y}{x} \quad (\text{if } x \neq 0)

To find θ\theta, we can use the arctangent function (or tan1\tan^{-1}):

θ=arctan(yx)\theta = \arctan\left(\frac{y}{x}\right)

Calculators usually give the arctan\arctan value in the range (90,90)(-90^\circ, 90^\circ) or (π/2,π/2)(-\pi/2, \pi/2). We need to consider the quadrant where the point (x,y)(x, y) lies to determine the correct argument.

  • Quadrant II (x>0,y>0x>0, y>0):

    θ=arctan(y/x)\theta = \arctan(y/x)
  • Quadrant IIII (x<0,y>0x<0, y>0):

    θ=180+arctan(y/x) or θ=π+arctan(y/x)\theta = 180^\circ + \arctan(y/x) \text{ or } \theta = \pi + \arctan(y/x)
  • Quadrant IIIIII (x<0,y<0x<0, y<0):

    θ=180+arctan(y/x) or θ=π+arctan(y/x)\theta = 180^\circ + \arctan(y/x) \text{ or } \theta = \pi + \arctan(y/x)
  • Quadrant IVIV (x>0,y<0x>0, y<0):

    θ=360+arctan(y/x) or θ=2π+arctan(y/x)\theta = 360^\circ + \arctan(y/x) \text{ or } \theta = 2\pi + \arctan(y/x)

    or simply

    θ=arctan(y/x)\theta = \arctan(y/x)

    if a negative angle is desired

Often, we are interested in the Principal Argument (written Arg(z)\text{Arg}(z)), which is the argument value in the interval (180,180](-180^\circ, 180^\circ] or (π,π](-\pi, \pi].

Calculating the Argument

  1. Find the argument of z1=1+iz_1 = 1 + i

    The point (1,1)(1, 1) is in Quadrant II.

    tanθ=yx=11=1\tan \theta = \frac{y}{x} = \frac{1}{1} = 1
    θ=arctan(1)=45 or π4 radians\theta = \arctan(1) = 45^\circ \text{ or } \frac{\pi}{4} \text{ radians}
  2. Find the argument of z2=3+iz_2 = -\sqrt{3} + i

    The point (3,1)(-\sqrt{3}, 1) is in Quadrant IIII.

    tanθ=yx=13\tan \theta = \frac{y}{x} = \frac{1}{-\sqrt{3}}
    Base angle=arctan(13)=arctan(13)=30\text{Base angle} = \arctan\left(\left|\frac{1}{-\sqrt{3}}\right|\right) = \arctan\left(\frac{1}{\sqrt{3}}\right) = 30^\circ
    θ=18030=150 or 5π6 radians\theta = 180^\circ - 30^\circ = 150^\circ \text{ or } \frac{5\pi}{6} \text{ radians}

    (Because it's in Quadrant IIII, we use 180base angle180^\circ - \text{base angle})

  3. Find the argument of z3=1i3z_3 = -1 - i\sqrt{3}

    The point (1,3)(-1, -\sqrt{3}) is in Quadrant IIIIII.

    tanθ=yx=31=3\tan \theta = \frac{y}{x} = \frac{-\sqrt{3}}{-1} = \sqrt{3}
    Base angle=arctan(3)=60\text{Base angle} = \arctan(\sqrt{3}) = 60^\circ
    θ=180+60=240 or 4π3 radians\theta = 180^\circ + 60^\circ = 240^\circ \text{ or } \frac{4\pi}{3} \text{ radians}

    (Because it's in Quadrant IIIIII, we use 180+base angle180^\circ + \text{base angle} . Principal Argument: 120-120^\circ or 2π/3-2\pi/3 ).

  4. Find the argument of z4=33iz_4 = 3 - 3i

    The point (3,3)(3, -3) is in Quadrant IVIV.

    tanθ=yx=33=1\tan \theta = \frac{y}{x} = \frac{-3}{3} = -1
    Base angle=arctan(1)=arctan(1)=45\text{Base angle} = \arctan(|-1|) = \arctan(1) = 45^\circ
    θ=36045=315 or 7π4 radians\theta = 360^\circ - 45^\circ = 315^\circ \text{ or } \frac{7\pi}{4} \text{ radians}

    (Because it's in Quadrant IVIV, we use 360base angle360^\circ - \text{base angle} . Principal Argument: 45-45^\circ or π/4-\pi/4 ).

Exercise

Find the modulus and argument (in degrees) of the following complex numbers:

  1. za=2+2iz_a = 2 + 2i
  2. zb=4z_b = -4
  3. zc=iz_c = -i

Answer Key

  1. For za=2+2iz_a = 2 + 2i:

    x=2,y=2x=2, y=2 (Quadrant II) Modulus:

    za=22+22=4+4=8=22|z_a| = \sqrt{2^2 + 2^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}

    Argument:

    tanθ=22=1    θ=arctan(1)=45\tan \theta = \frac{2}{2} = 1 \implies \theta = \arctan(1) = 45^\circ
  2. For zb=4z_b = -4:

    zb=4+0iz_b = -4 + 0i. x=4,y=0x=-4, y=0 (Negative real axis) Modulus:

    zb=(4)2+02=16=4|z_b| = \sqrt{(-4)^2 + 0^2} = \sqrt{16} = 4

    Argument: The point is on the negative real axis.

    θ=180\theta = 180^\circ
  3. For zc=iz_c = -i:

    zc=01iz_c = 0 - 1i. x=0,y=1x=0, y=-1 (Negative imaginary axis) Modulus:

    zc=02+(1)2=1=1|z_c| = \sqrt{0^2 + (-1)^2} = \sqrt{1} = 1

    Argument: The point is on the negative imaginary axis.

    θ=270\theta = 270^\circ

    or 90-90^\circ (Principal Argument).