Source codeVideos

Command Palette

Search for a command to run...

Functions and Their Modeling

Step Function Modeling

Understanding Step Functions

A step function is a type of mathematical function that has constant values on certain intervals and experiences sudden jumps at specific points. The graph of this function resembles stairs, with horizontal lines connecting points of discontinuity.

Mathematical Definition

A step function can be defined as a piecewise function of the form:

f(x)={c1,if a1x<b1c2,if a2x<b2c3,if a3x<b3cn,if anx<bnf(x) = \begin{cases} c_1, & \text{if } a_1 \leq x < b_1 \\ c_2, & \text{if } a_2 \leq x < b_2 \\ c_3, & \text{if } a_3 \leq x < b_3 \\ \vdots \\ c_n, & \text{if } a_n \leq x < b_n \end{cases}

where c1,c2,c3,,cnc_1, c_2, c_3, \ldots, c_n are constants and [ai,bi)[a_i, b_i) are non-overlapping intervals.

Characteristics of step functions:

  • Constant values on each interval
  • Jump discontinuities at interval boundary points
  • Graph shaped like stairs
  • Belongs to the category of piecewise functions

Types of Step Functions

Floor Function

The floor function, denoted by x\lfloor x \rfloor, gives the largest integer less than or equal to xx.

x=max{nZ:nx}\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \leq x\}

To make it easier to understand, let's look at the following example:

Floor Function f(x)=xf(x) = \lfloor x \rfloor
The graph shows the floor function that gives the largest integer value that does not exceed x.

Floor function value table:

x-2.5-1.7-1-0.300.811.92.4
x\lfloor x \rfloor-3-2-1-100112

Ceiling Function

The ceiling function, denoted by x\lceil x \rceil, gives the smallest integer greater than or equal to xx.

x=min{nZ:nx}\lceil x \rceil = \min\{n \in \mathbb{Z} : n \geq x\}

Let's look at the following example:

Ceiling Function f(x)=xf(x) = \lceil x \rceil
The graph shows the ceiling function that gives the smallest integer value that is not less than x.

Unit Step Function (Heaviside)

The unit step function or Heaviside function, denoted by H(x)H(x) or u(x)u(x), is defined as:

H(x)={0,if x<01,if x0H(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{if } x \geq 0 \end{cases}

Unlike the floor and ceiling functions, the unit step function has a value of 0 for x<0x < 0 and 1 for x0x \geq 0.

Unit Step Function H(x)H(x)
The graph shows the unit step function that jumps from 0 to 1 at point x = 0.

Properties of Step Functions

General properties:

  1. Domain: R\mathbb{R} (usually)
  2. Range: Set of discrete values
  3. Continuity: jump discontinuities at certain points

Special properties of floor and ceiling functions:

  1. xx<x+1\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1
  2. x1<xx\lceil x \rceil - 1 < x \leq \lceil x \rceil
  3. x=x+1 if xZ\lceil x \rceil = \lfloor x \rfloor + 1 \text{ if } x \notin \mathbb{Z}
  4. x=x if xZ\lceil x \rceil = \lfloor x \rfloor \text{ if } x \in \mathbb{Z}

Comparison table of floor and ceiling functions:

xx\lfloor x \rfloorx\lceil x \rceilDifference
-2.3-3-21
-1-1-10
0.7011
2220
3.8341

Transformations of Step Functions

Vertical Translation

The function f(x)=x+kf(x) = \lfloor x \rfloor + k shifts the floor function graph upward (if k>0k > 0) or downward (if k<0k < 0).

Vertical Translation of Floor Function
Comparison of f(x)=xf(x) = \lfloor x \rfloor with g(x)=x+2g(x) = \lfloor x \rfloor + 2 and h(x)=x1h(x) = \lfloor x \rfloor - 1.

Horizontal Translation

The function f(x)=xhf(x) = \lfloor x - h \rfloor shifts the graph to the right (if h>0h > 0) or to the left (if h<0h < 0).

Practice Problems

  1. Determine the value of 3.7+2.3\lfloor 3.7 \rfloor + \lceil -2.3 \rceil

  2. A bookstore gives discounts based on the number of purchases:

    • 1-5 books: no discount
    • 6-10 books: 10% discount
    • 11-20 books: 15% discount
    • 20 books: 20% discount

    If the price per book is Rp 50,000, create a function that represents the total price after discount!

  3. Graph of function f(x)=2x1f(x) = 2\lfloor x \rfloor - 1 for 3x3-3 \leq x \leq 3

  4. Solve the equation 2x+1=5\lfloor 2x + 1 \rfloor = 5

  5. An elevator can accommodate a maximum of 8 people. If there are nn people who want to use the elevator, how many times must the elevator operate?

Answer Key

  1. Calculating floor and ceiling function values:

    3.7=3 (largest integer 3.7)\lfloor 3.7 \rfloor = 3 \text{ (largest integer } \leq 3.7\text{)}
    2.3=2 (smallest integer 2.3)\lceil -2.3 \rceil = -2 \text{ (smallest integer } \geq -2.3\text{)}
    3.7+2.3=3+(2)=1\lfloor 3.7 \rfloor + \lceil -2.3 \rceil = 3 + (-2) = 1
  2. Bookstore discount function model:

    Let nn be the number of books purchased, then the total price after discount is:

    H(n)={50000n,if 1n550000n×0.9,if 6n1050000n×0.85,if 11n2050000n×0.8,if n>20H(n) = \begin{cases} 50000n, & \text{if } 1 \leq n \leq 5 \\ 50000n \times 0.9, & \text{if } 6 \leq n \leq 10 \\ 50000n \times 0.85, & \text{if } 11 \leq n \leq 20 \\ 50000n \times 0.8, & \text{if } n > 20 \end{cases}
  3. Graph of function f(x)=2x1f(x) = 2\lfloor x \rfloor - 1:

    For each interval:

    • 3x<2:f(x)=2(3)1=7-3 \leq x < -2: f(x) = 2(-3) - 1 = -7
    • 2x<1:f(x)=2(2)1=5-2 \leq x < -1: f(x) = 2(-2) - 1 = -5
    • 1x<0:f(x)=2(1)1=3-1 \leq x < 0: f(x) = 2(-1) - 1 = -3
    • 0x<1:f(x)=2(0)1=10 \leq x < 1: f(x) = 2(0) - 1 = -1
    • 1x<2:f(x)=2(1)1=11 \leq x < 2: f(x) = 2(1) - 1 = 1
    • 2x3:f(x)=2(2)1=32 \leq x \leq 3: f(x) = 2(2) - 1 = 3

    If we create the graph, it would look approximately like the following:

    Graph of f(x)=2x1f(x) = 2\lfloor x \rfloor - 1
    The graph shows the transformation of the floor function with a scale factor of 2 and vertical translation of -1.
  4. Solving the equation 2x+1=5\lfloor 2x + 1 \rfloor = 5:

    52x+1<65 \leq 2x + 1 < 6
    42x<54 \leq 2x < 5
    2x<2.52 \leq x < 2.5

    So the solution set is x[2,2.5)x \in [2, 2.5).

  5. Calculating the number of elevator operations:

    If there are nn people and the elevator can accommodate a maximum of 8 people, then the number of elevator operations required is:

    f(n)=n8f(n) = \lceil \frac{n}{8} \rceil

    The ceiling function is used because if there are remaining people (less than 8), one additional elevator operation is still required.