Source codeVideos

Command Palette

Search for a command to run...

Geometric Transformation

Matrix and Transformation Connection

What is the Connection between Matrices and Geometric Transformations?

A 2×22 \times 2 matrix can be associated with transformation operations on any point in the Cartesian plane.

A point in the Cartesian plane, often symbolized by the ordered pair (x,y)(x,y), can also be symbolized by the position vector (xy)\begin{pmatrix} x \\ y \end{pmatrix}. This position vector notation will be frequently used in discussing the connection between matrices and transformations.

If a point P(x,y)P(x,y) is transformed by the matrix M=(abcd)M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, its image P(x,y)P'(x',y') is obtained from matrix multiplication:

(xy)=(abcd)(xy)=(ax+bycx+dy)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}

Thus, x=ax+byx' = ax + by and y=cx+dyy' = cx + dy.

Multiplying a Matrix by a Position Vector

If (xy)\begin{pmatrix} x \\ y \end{pmatrix} represents any point in the Cartesian plane, find the product of (0110)(xy)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.

Alternative Solution:

The matrix product is:

(0110)(xy)=((0)(x)+(1)(y)(1)(x)+(0)(y))=(yx)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} (0)(x) + (-1)(y) \\ (1)(x) + (0)(y) \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}

It can be observed that the point (x,y)(x,y) is transformed by the matrix (0110)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} into the point (y,x)(-y,x). This is the formula for a 9090^\circ counter-clockwise rotation about the origin.

Transformation of Point P(2,3)P(2,3) by Matrix (0110)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
Point P(2,3)P(2,3) is transformed into P(3,2)P'(-3,2).

Multiplying a Matrix by Three Points Simultaneously

Find the image of ABC\triangle ABC, with vertices A(1,1)A(1,1), B(4,1)B(4,1), and C(4,2)C(4,2) transformed by the matrix (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.

Alternative Solution:

First, we can write the coordinates of the points as columns of a matrix, i.e., (144112)\begin{pmatrix} 1 & 4 & 4 \\ 1 & 1 & 2 \end{pmatrix} (Columns A, B, C).

Next, multiply this matrix from the left by (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.

(1001)(144112)=((1)(1)+(0)(1)(1)(4)+(0)(1)(1)(4)+(0)(2)(0)(1)+(1)(1)(0)(4)+(1)(1)(0)(4)+(1)(2))\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 4 & 4 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} (-1)(1)+(0)(1) & (-1)(4)+(0)(1) & (-1)(4)+(0)(2) \\ (0)(1)+(-1)(1) & (0)(4)+(-1)(1) & (0)(4)+(-1)(2) \end{pmatrix}
=(144112)= \begin{pmatrix} -1 & -4 & -4 \\ -1 & -1 & -2 \end{pmatrix}

The result of the transformation is a new triangle ABC\triangle A'B'C' with vertices A(1,1)A'(-1,-1), B(4,1)B'(-4,-1), and C(4,2)C'(-4,-2).

The matrix (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} represents a 180180^\circ rotation about the origin.

Transformation of ABC\triangle ABC by Matrix (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}
Triangle ABCABC is transformed into ABCA'B'C'.

Exercises

  1. Find the product of (0110)(xy)\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}. What transformation does this matrix represent?
  2. A transformation is associated with the matrix (1201)\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}. Find the image of a triangle with vertices A(2,0)A(2,0), B(2,1)B(2,1), and C(0,1)C(0,1) under this transformation!

Key Answers

  1. (0110)(xy)=((0)(x)+(1)(y)(1)(x)+(0)(y))=(yx)\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} (0)(x) + (1)(y) \\ (-1)(x) + (0)(y) \end{pmatrix} = \begin{pmatrix} y \\ -x \end{pmatrix}

    The point (x,y)(x,y) is transformed into (y,x)(y,-x).

    This is a 90-90^\circ (or 270270^\circ) clockwise rotation about the origin.

  2. Transformation matrix M=(1201)M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.

    Vertices: A(2,0)A(2,0), B(2,1)B(2,1), C(0,1)C(0,1).

    Point matrix: (220011)\begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}.

    (1201)(220011)=((1)(2)+(2)(0)(1)(2)+(2)(1)(1)(0)+(2)(1)(0)(2)+(1)(0)(0)(2)+(1)(1)(0)(0)+(1)(1))\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} (1)(2)+(2)(0) & (1)(2)+(2)(1) & (1)(0)+(2)(1) \\ (0)(2)+(1)(0) & (0)(2)+(1)(1) & (0)(0)+(1)(1) \end{pmatrix}
    =(2+02+20+20+00+10+1)=(242011)= \begin{pmatrix} 2+0 & 2+2 & 0+2 \\ 0+0 & 0+1 & 0+1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 2 \\ 0 & 1 & 1 \end{pmatrix}

    Image vertices: A(2,0)A'(2,0), B(4,1)B'(4,1), C(2,1)C'(2,1).

    (This transformation is known as a shear)