Source codeVideos

Command Palette

Search for a command to run...

Matrix

Matrix Addition

What Is Matrix Addition?

Matrix addition is a fundamental operation in matrix algebra where two or more matrices are combined to produce a new matrix. This operation can only be performed if the matrices being added have the same size or order.

The result of the addition is a new matrix of the same order, where each element is the sum of the corresponding elements (elements in the same position) from the original matrices.

Formal Definition of Matrix Addition

Two matrices, let's say matrix AA and matrix BB, can be added if and only if both matrices have the same order.

Suppose matrix AA is of order m×nm \times n with elements aija_{ij} (element in the ii-th row and jj-th column), and matrix BB is also of order m×nm \times n with elements bijb_{ij}.

Then, the sum of matrix AA and matrix BB, which we call matrix CC, is written as C=A+BC = A + B. Matrix CC will also be of order m×nm \times n, with elements cijc_{ij} defined as:

cij=aij+bijc_{ij} = a_{ij} + b_{ij}

This means that each element in the resulting matrix is obtained by adding the elements that are in the same position from the two matrices being added.

How to Perform Matrix Addition

To add two matrices, follow these steps:

  1. Ensure Same Order: Check if both matrices have the same number of rows and columns. If not, addition cannot be performed.
  2. Add Corresponding Elements: Add the elements that are in the same row and column position from both matrices.
  3. Form the Resultant Matrix: Arrange the sums of these elements into a new matrix of the same order.

Example of Matrix Addition

Suppose we have two matrices, PP and QQ, as follows:

P=[152047]P = \begin{bmatrix} 1 & 5 \\ -2 & 0 \\ 4 & 7 \end{bmatrix}
Q=[638129]Q = \begin{bmatrix} 6 & -3 \\ 8 & 1 \\ -2 & 9 \end{bmatrix}

Both matrices are of order 3×23 \times 2 (3 rows and 2 columns), so they can be added.

Then, P+QP+Q is:

P+Q=[152047]+[638129]P+Q = \begin{bmatrix} 1 & 5 \\ -2 & 0 \\ 4 & 7 \end{bmatrix} + \begin{bmatrix} 6 & -3 \\ 8 & 1 \\ -2 & 9 \end{bmatrix}
=[1+65+(3)2+80+14+(2)7+9]= \begin{bmatrix} 1+6 & 5+(-3) \\ -2+8 & 0+1 \\ 4+(-2) & 7+9 \end{bmatrix}
=[7261216]= \begin{bmatrix} 7 & 2 \\ 6 & 1 \\ 2 & 16 \end{bmatrix}

Thus, the sum of matrix PP and matrix QQ is the matrix [7261216]\begin{bmatrix} 7 & 2 \\ 6 & 1 \\ 2 & 16 \end{bmatrix}.

Matrices That Cannot Be Added

Suppose matrix X=[1234]X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and matrix Y=[5678910]Y = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}.

Matrix XX is of order 2×22 \times 2, while matrix YY is of order 2×32 \times 3. Since their orders are different, matrix XX and matrix YY cannot be added.

Properties of Matrix Addition

Matrix addition has several important properties, similar to the properties of addition for real numbers. Let AA, BB, and CC be matrices of the same order, and OO be the zero matrix (a matrix where all elements are zero) of the same order as AA, BB, and CC.

  1. Commutative Property: The order of matrix addition does not affect the result.

    A+B=B+AA + B = B + A

    This means that adding matrix AA to BB will produce the same matrix as adding matrix BB to AA.

  2. Associative Property: The grouping in the addition of three or more matrices does not affect the result.

    (A+B)+C=A+(B+C)(A + B) + C = A + (B + C)

    This means you can add AA and BB first, then add the result to CC, or add BB and CC first, then add AA to the result. The final outcome will be the same.

  3. Existence of an Identity Element (Zero Matrix): There exists a zero matrix OO that acts as the identity element in addition.

    A+O=O+A=AA + O = O + A = A

    This means that if a matrix is added to a zero matrix (of the same order), the result is the matrix itself.

    This zero matrix plays a role similar to the number 0 in the addition of numbers.

  4. Existence of an Additive Inverse (Opposite of a Matrix): Every matrix AA has an additive inverse, denoted as A-A, which when added to AA results in the zero matrix OO.

    A+(A)=OA + (-A) = O

    The matrix A-A is a matrix where each element is the opposite (negative) of the corresponding elements of matrix AA.

    For example, if aija_{ij} is an element of AA, then aij-a_{ij} is an element of A-A.

Exercises

Problem 1

Given the following matrices:

A=[317052]A = \begin{bmatrix} 3 & -1 & 7 \\ 0 & 5 & 2 \end{bmatrix}
B=[294631]B = \begin{bmatrix} -2 & 9 & -4 \\ 6 & -3 & 1 \end{bmatrix}
C=[1001]C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Calculate A+BA+B and B+AB+A. Then, determine if A+CA+C can be calculated and provide your explanation.

Problem 2

Determine the values of x,y,x, y, and zz from the following matrix addition:

[2x513y]+[42z7]=[10361]\begin{bmatrix} 2x & 5 \\ -1 & 3y \end{bmatrix} + \begin{bmatrix} 4 & -2 \\ z & 7 \end{bmatrix} = \begin{bmatrix} 10 & 3 \\ 6 & 1 \end{bmatrix}

Problem 3

If P=[1230]P = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}, determine the matrix P-P (the additive inverse of PP) and prove that P+(P)=OP + (-P) = O, where OO is the zero matrix of the same order.

Answer Key

Problem 1

Given matrices:

A=[317052]A = \begin{bmatrix} 3 & -1 & 7 \\ 0 & 5 & 2 \end{bmatrix}
B=[294631]B = \begin{bmatrix} -2 & 9 & -4 \\ 6 & -3 & 1 \end{bmatrix}
C=[1001]C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Addition of matrix AA and BB (A+BA+B):

A+B=[317052]+[294631]A+B = \begin{bmatrix} 3 & -1 & 7 \\ 0 & 5 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 9 & -4 \\ 6 & -3 & 1 \end{bmatrix}
=[3+(2)1+97+(4)0+65+(3)2+1]= \begin{bmatrix} 3+(-2) & -1+9 & 7+(-4) \\ 0+6 & 5+(-3) & 2+1 \end{bmatrix}
=[183623]= \begin{bmatrix} 1 & 8 & 3 \\ 6 & 2 & 3 \end{bmatrix}

Addition of matrix BB and AA (B+AB+A):

B+A=[294631]+[317052]B+A = \begin{bmatrix} -2 & 9 & -4 \\ 6 & -3 & 1 \end{bmatrix} + \begin{bmatrix} 3 & -1 & 7 \\ 0 & 5 & 2 \end{bmatrix}
=[2+39+(1)4+76+03+51+2]= \begin{bmatrix} -2+3 & 9+(-1) & -4+7 \\ 6+0 & -3+5 & 1+2 \end{bmatrix}
=[183623]= \begin{bmatrix} 1 & 8 & 3 \\ 6 & 2 & 3 \end{bmatrix}

(Commutative property proven: A+B=B+AA+B = B+A)

Addition of matrix AA and CC (A+CA+C):

Cannot be calculated. Matrix AA is of order 2×32 \times 3, while matrix CC is of order 2×22 \times 2. Since their orders are different, the addition A+CA+C cannot be performed.

Problem 2

Given the matrix addition:

[2x513y]+[42z7]=[10361]\begin{bmatrix} 2x & 5 \\ -1 & 3y \end{bmatrix} + \begin{bmatrix} 4 & -2 \\ z & 7 \end{bmatrix} = \begin{bmatrix} 10 & 3 \\ 6 & 1 \end{bmatrix}

Perform matrix addition on the left side:

[2x+45+(2)1+z3y+7]=[10361]\begin{bmatrix} 2x+4 & 5+(-2) \\ -1+z & 3y+7 \end{bmatrix} = \begin{bmatrix} 10 & 3 \\ 6 & 1 \end{bmatrix}
[2x+431+z3y+7]=[10361]\begin{bmatrix} 2x+4 & 3 \\ -1+z & 3y+7 \end{bmatrix} = \begin{bmatrix} 10 & 3 \\ 6 & 1 \end{bmatrix}

Based on the equality of two matrices, corresponding elements must be equal:

For the element in row 1, column 1: 2x+4=102x+4 = 10

2x=1042x = 10-4
2x=62x = 6
x=3x = 3

For the element in row 1, column 2: 3=33 = 3 (already consistent).

For the element in row 2, column 1: 1+z=6-1+z = 6

z=6+1z = 6+1
z=7z = 7

For the element in row 2, column 2: 3y+7=13y+7 = 1

3y=173y = 1-7
3y=63y = -6
y=2y = -2

Thus, the values are x=3x=3, y=2y=-2, and z=7z=7.

Problem 3

Given matrix P=[1230]P = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}.

The additive inverse of PP, which is P-P, is:

P=[1(2)30]=[1230]-P = \begin{bmatrix} -1 & -(-2) \\ -3 & -0 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -3 & 0 \end{bmatrix}

Proof that P+(P)=OP + (-P) = O:

P+(P)=[1230]+[1230]P + (-P) = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ -3 & 0 \end{bmatrix}
=[1+(1)2+23+(3)0+0]= \begin{bmatrix} 1+(-1) & -2+2 \\ 3+(-3) & 0+0 \end{bmatrix}
=[0000]= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

The result is the zero matrix OO of order 2×22 \times 2. Proven.