Source codeVideos

Command Palette

Search for a command to run...

Matrix

Properties of Matrix Determinant

Discovering Properties of Matrix Determinants

Suppose we have two matrices, A and B, as follows:

A=[5213]A = \begin{bmatrix} -5 & 2 \\ 1 & -3 \end{bmatrix}
B=[9411]B = \begin{bmatrix} 9 & -4 \\ 1 & -1 \end{bmatrix}

Determinant of the Product of Two Matrices

Let's investigate the relationship between the determinant of the product of two matrices (AB|AB|) and the product of their individual determinants (AB|A||B|).

Step 1: Calculate the Determinant of Matrix A (A|A|)

The determinant of matrix A is:

A=(53)(21)=152=13|A| = (-5 \cdot -3) - (2 \cdot 1) = 15 - 2 = 13

Step 2: Calculate the Determinant of Matrix B (B|B|)

The determinant of matrix B is:

B=(91)(41)=9(4)=9+4=5|B| = (9 \cdot -1) - (-4 \cdot 1) = -9 - (-4) = -9 + 4 = -5

Step 3: Determine the Product of Matrix A and B (ABAB)

Matrix AB is obtained by multiplying matrix A and B:

AB=[5213][9411]AB = \begin{bmatrix} -5 & 2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 9 & -4 \\ 1 & -1 \end{bmatrix}
AB=[(5)(9)+(2)(1)(5)(4)+(2)(1)(1)(9)+(3)(1)(1)(4)+(3)(1)]AB = \begin{bmatrix} (-5)(9) + (2)(1) & (-5)(-4) + (2)(-1) \\ (1)(9) + (-3)(1) & (1)(-4) + (-3)(-1) \end{bmatrix}
AB=[45+2202934+3]AB = \begin{bmatrix} -45 + 2 & 20 - 2 \\ 9 - 3 & -4 + 3 \end{bmatrix}
AB=[431861]AB = \begin{bmatrix} -43 & 18 \\ 6 & -1 \end{bmatrix}

Step 4: Calculate the Determinant of Matrix AB (AB|AB|)

Now, let's calculate the determinant of the product matrix AB:

AB=(431)(186)=43108=65|AB| = (-43 \cdot -1) - (18 \cdot 6) = 43 - 108 = -65

Step 5: Compare AB|AB| with AB|A||B|

We have obtained A=13|A| = 13, B=5|B| = -5, and AB=65|AB| = -65.

Let's calculate AB|A||B|:

AB=13(5)=65|A||B| = 13 \cdot (-5) = -65

Notice that the value of AB|AB| is the same as the value of AB|A||B|.

Formula for the Property of Determinant of Matrix Product

If A and B are two square matrices of the same order, then the determinant of the product of matrices A and B is equal to the product of their individual determinants.

AB=AB|AB| = |A||B|

Determinant of a Matrix with Scalar Multiplication

Now, let's investigate what happens to the determinant of a matrix if each element of the matrix is multiplied by a scalar (constant).

Suppose we use matrix A from the previous example and a scalar k=2k=2.

A=[5213]A = \begin{bmatrix} -5 & 2 \\ 1 & -3 \end{bmatrix}

We already know that A=13|A| = 13. Matrix A is a 2×22 \times 2 order matrix, so n=2n=2.

Step 1: Determine Matrix kAkA

Multiply each element of matrix A by the scalar k=2k=2:

kA=2A=2[5213]=[2(5)2(2)2(1)2(3)]=[10426]kA = 2A = 2\begin{bmatrix} -5 & 2 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} 2(-5) & 2(2) \\ 2(1) & 2(-3) \end{bmatrix} = \begin{bmatrix} -10 & 4 \\ 2 & -6 \end{bmatrix}

Step 2: Calculate the Determinant of Matrix kAkA (kA|kA|)

The determinant of matrix kAkA is:

kA=(106)(42)=608=52|kA| = (-10 \cdot -6) - (4 \cdot 2) = 60 - 8 = 52

Step 3: Compare kA|kA| with knAk^n|A|

We have kA=52|kA| = 52. The scalar k=2k=2, the order of the matrix n=2n=2, and A=13|A|=13.

Let's calculate knAk^n|A|:

knA=2213=413=52k^n|A| = 2^2 \cdot 13 = 4 \cdot 13 = 52

Notice that the value of kA|kA| is the same as the value of knAk^n|A|.

Formula for the Property of Determinant of Scalar Multiplication

If A is a square matrix of order n×nn \times n and kk is a scalar, then the determinant of matrix kAkA is knk^n multiplied by the determinant of matrix A.

kA=knA|kA| = k^n |A|

Here, nn is the order (number of rows or columns) of the square matrix A.