Source codeVideos

Command Palette

Search for a command to run...

Combinatorics

Binomial Newton

What is Binomial Newton?

Have you ever wondered how to quickly calculate the result of (x+y)10(x + y)^{10} without having to multiply over and over again? Binomial Newton is a mathematical technique that allows us to expand the form (x+y)n(x + y)^n into a sum of simpler terms.

Imagine it like unwrapping a layered gift. Each layer we open reveals a certain pattern that is consistent and predictable. Similarly with binomial Newton, each power has a unique coefficient pattern that can be calculated with the same formula.

Let's look at the basic patterns for the first few powers:

(x+y)0=1(x + y)^0 = 1
(x+y)1=x+y(x + y)^1 = x + y
(x+y)2=x2+2xy+y2(x + y)^2 = x^2 + 2xy + y^2
(x+y)3=x3+3x2y+3xy2+y3(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3
(x+y)4=x4+4x3y+6x2y2+4xy3+y4(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4

From this pattern, we can see that each term has certain coefficients that follow clear mathematical rules.

General Formula and Binomial Coefficients

The general formula for binomial Newton can be written as:

(x+y)n=k=0n(nk)xnkyk(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k

Where (nk)\binom{n}{k} is the binomial coefficient calculated with the formula:

(nk)=n!k!(nk)!\binom{n}{k} = \frac{n!}{k!(n-k)!}

This binomial coefficient is also known as "n choose k" because it shows how many ways to choose k objects from n available objects.

The complete expansion form can be written as:

(x+y)n=(n0)xn+(n1)xn1y+(n2)xn2y2++(nn)yn(x + y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n}y^n

Each term in the expansion has the structure (nk)xnkyk\binom{n}{k}x^{n-k}y^k where the powers of xx and yy always sum to nn.

Finding Specific Coefficients

One important application of binomial Newton is finding coefficients of specific terms without having to expand the entire expression.

Suppose we want to find the coefficient of x2x^2 in the expansion of (1x)2014(1 - x)^{2014}.

First, we rewrite it in standard binomial form with a=1a = 1, b=xb = -x, and n=2014n = 2014:

(1+(x))2014=k=02014(2014k)(1)2014k(x)k(1 + (-x))^{2014} = \sum_{k=0}^{2014} \binom{2014}{k} (1)^{2014-k} (-x)^k

To get the term containing x2x^2, we need k=2k = 2:

(20142)(1)2012(x)2=(20142)1x2=(20142)x2\binom{2014}{2} (1)^{2012} (-x)^2 = \binom{2014}{2} \cdot 1 \cdot x^2 = \binom{2014}{2} x^2

Calculating the binomial coefficient:

(20142)=2014!2!(20142)!=2014×20132×1\binom{2014}{2} = \frac{2014!}{2!(2014-2)!} = \frac{2014 \times 2013}{2 \times 1}
=4,053,1822=2,026,591= \frac{4{,}053{,}182}{2} = 2{,}026{,}591

Therefore, the coefficient of x2x^2 is 2,026,5912{,}026{,}591.

Finding the Constant Term

The constant term is a term that does not contain any variables. To find it, we need to identify the term where the power of all variables equals zero.

Example: Determine the constant term of (3x32x)8\left(3x^3 - \frac{2}{x}\right)^8.

We write it in binomial form with a=3x3a = 3x^3 and b=2xb = -\frac{2}{x}:

(3x32x)8=k=08(8k)(3x3)8k(2x)k\left(3x^3 - \frac{2}{x}\right)^8 = \sum_{k=0}^{8} \binom{8}{k} (3x^3)^{8-k} \left(-\frac{2}{x}\right)^k

The general term is:

(8k)(3x3)8k(2x)k=(8k)(3)8k(x3)8k(2)k(x1)k\binom{8}{k} (3x^3)^{8-k} \left(-\frac{2}{x}\right)^k = \binom{8}{k} \cdot (3)^{8-k} \cdot (x^3)^{8-k} \cdot (-2)^k \cdot (x^{-1})^k
=(8k)38k(2)kx3(8k)xk= \binom{8}{k} \cdot 3^{8-k} \cdot (-2)^k \cdot x^{3(8-k)} \cdot x^{-k}
=(8k)38k(2)kx243kk=(8k)38k(2)kx244k= \binom{8}{k} \cdot 3^{8-k} \cdot (-2)^k \cdot x^{24-3k-k} = \binom{8}{k} \cdot 3^{8-k} \cdot (-2)^k \cdot x^{24-4k}

For the constant term, the power of xx must be zero:

244k=04k=24k=624 - 4k = 0 \Rightarrow 4k = 24 \Rightarrow k = 6

Substituting k=6k = 6:

(86)386(2)6x0=(86)32(2)6\binom{8}{6} \cdot 3^{8-6} \cdot (-2)^6 \cdot x^0 = \binom{8}{6} \cdot 3^2 \cdot (-2)^6
=8!6!2!964=8×72×1964= \frac{8!}{6! \cdot 2!} \cdot 9 \cdot 64 = \frac{8 \times 7}{2 \times 1} \cdot 9 \cdot 64
=28964=25264=16,128= 28 \cdot 9 \cdot 64 = 252 \cdot 64 = 16{,}128

Note that (2)6=64(-2)^6 = 64 because even powers always produce positive values, just like (+2)6=64(+2)^6 = 64.

Therefore, the constant term is 16,12816{,}128.

Problem Solving Strategy

When facing binomial Newton problems, follow these systematic steps:

  1. Identify the components in the form (a+b)n(a + b)^n and clearly determine the values of a, b, and n.

  2. Determine the type of term being sought, whether it's a specific coefficient, constant term, or term with a specific power.

  3. Use the general term formula (nk)ankbk\binom{n}{k} a^{n-k} b^k and adjust according to the required conditions.

  4. Calculate carefully the binomial coefficient values and other arithmetic operations.

Example Strategy Application:

Determine the coefficient of x5x^5 in the expansion of (2x+3)8(2x + 3)^8.

  1. Identify components

    From (2x+3)8(2x + 3)^8, we get:

    • a=2xa = 2x
    • b=3b = 3
    • n=8n = 8
  2. Determine the type of term

    We are looking for the coefficient of the term containing x5x^5.

  3. Use the general term formula

    General term: (8k)(2x)8k(3)k\binom{8}{k} (2x)^{8-k} (3)^k

    Expanding the general term:

    (8k)(2x)8k(3)k=(8k)28kx8k3k=(8k)28k3kx8k\binom{8}{k} (2x)^{8-k} (3)^k = \binom{8}{k} \cdot 2^{8-k} \cdot x^{8-k} \cdot 3^k = \binom{8}{k} \cdot 2^{8-k} \cdot 3^k \cdot x^{8-k}

    To get x5x^5, we need 8k=58-k = 5, so k=3k = 3.

  4. Calculate carefully

    Substituting k=3k = 3:

    (83)28333x5=(83)2533x5\binom{8}{3} \cdot 2^{8-3} \cdot 3^3 \cdot x^5 = \binom{8}{3} \cdot 2^5 \cdot 3^3 \cdot x^5
    =8!3!5!3227x5= \frac{8!}{3! \cdot 5!} \cdot 32 \cdot 27 \cdot x^5
    =8×7×63×2×13227x5= \frac{8 \times 7 \times 6}{3 \times 2 \times 1} \cdot 32 \cdot 27 \cdot x^5
    =563227x5= 56 \cdot 32 \cdot 27 \cdot x^5
    =1,79227x5=48,384x5= 1{,}792 \cdot 27 \cdot x^5 = 48{,}384x^5

    Therefore, the coefficient of x5x^5 is 48,38448{,}384.

Remember that every term in the binomial expansion has a total power equal to the original power, and binomial coefficients are always symmetric: (nk)=(nnk)\binom{n}{k} = \binom{n}{n-k}.

Exercises

  1. Determine the coefficient of x4x^4 in the expansion of (2x3)7(2x - 3)^7.

  2. Calculate the constant term of (x2+1x)9\left(x^2 + \frac{1}{x}\right)^9.

  3. In the expansion of (1+2x)10(1 + 2x)^{10}, determine the term containing x3x^3.

Answer Key

  1. Solution:

    Write in binomial form with a=2xa = 2x, b=3b = -3, and n=7n = 7.

    General term: (7k)(2x)7k(3)k=(7k)27k(3)kx7k\binom{7}{k} (2x)^{7-k} (-3)^k = \binom{7}{k} \cdot 2^{7-k} \cdot (-3)^k \cdot x^{7-k}

    For the coefficient of x4x^4, we need 7k=47-k = 4, so k=3k = 3.

    (73)273(3)3=(73)24(3)3\binom{7}{3} \cdot 2^{7-3} \cdot (-3)^3 = \binom{7}{3} \cdot 2^4 \cdot (-3)^3
    =7!3!4!16(27)= \frac{7!}{3! \cdot 4!} \cdot 16 \cdot (-27)
    =7×6×53×2×116(27)= \frac{7 \times 6 \times 5}{3 \times 2 \times 1} \cdot 16 \cdot (-27)
    =3516(27)=560(27)=15,120= 35 \cdot 16 \cdot (-27) = 560 \cdot (-27) = -15{,}120

    Therefore, the coefficient of x4x^4 is 15,120-15{,}120.

  2. Solution:

    Write in binomial form with a=x2a = x^2, b=1xb = \frac{1}{x}, and n=9n = 9.

    General term: (9k)(x2)9k(1x)k=(9k)x2(9k)xk\text{General term: } \binom{9}{k} (x^2)^{9-k} \left(\frac{1}{x}\right)^k = \binom{9}{k} \cdot x^{2(9-k)} \cdot x^{-k}
    =(9k)x182kxk=(9k)x182kk=(9k)x183k= \binom{9}{k} \cdot x^{18-2k} \cdot x^{-k} = \binom{9}{k} \cdot x^{18-2k-k} = \binom{9}{k} \cdot x^{18-3k}

    For the constant term, the power of xx must be zero: 183k=018-3k = 0, so k=6k = 6.

    (96)=(93)=9!3!6!=9×8×73×2×1=84\binom{9}{6} = \binom{9}{3} = \frac{9!}{3! \cdot 6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 84

    Therefore, the constant term is 8484.

  3. Solution:

    Write in binomial form with a=1a = 1, b=2xb = 2x, and n=10n = 10.

    General term: (10k)(1)10k(2x)k=(10k)2kxk\binom{10}{k} (1)^{10-k} (2x)^k = \binom{10}{k} \cdot 2^k \cdot x^k

    For the term containing x3x^3, we need k=3k = 3.

    (103)23x3=1208x3=960x3\binom{10}{3} \cdot 2^3 \cdot x^3 = 120 \cdot 8 \cdot x^3 = 960x^3

    Therefore, the term containing x3x^3 is 960x3960x^3.