The result of
∫(2sin2x−3cosx)dx=....
Explanation
To solve ∫(2sin2x−3cosx)dx, integrate each term separately
Separating the Integral
∫(2sin2x−3cosx)dx=2∫sin2xdx−3∫cosxdx
Integrating Each Term
For ∫sin2xdx, use substitution u=2x
∫sin2xdx=−21cos2x
For ∫cosxdx
∫cosxdx=sinx
Combining Results
∫(2sin2x−3cosx)dx=2(−21cos2x)−3sinx+C
=−cos2x−3sinx+C
Therefore, the result of ∫(2sin2x−3cosx)dx=−cos2x−3sinx+C